欧几里德空间中关于内积函数的度量矩阵是怎么理解的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 10:13:47
欧几里德空间中关于内积函数的度量矩阵是怎么理解的
关于一个欧几里德空间V的一个基,我们把内积函数在基向量上的值写成的一个矩阵称为关于该基的度量矩阵.
关于一个欧几里德空间V的一个基,我们把内积函数在基向量上的值写成的一个矩阵称为关于该基的度量矩阵.
首先你得理解基的作用.
一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数).
在有了基之后抽象的线性变换也就可以用具体的矩阵来描述了.
这里的道理是一样的,用Gram矩阵可以把抽象的内积转化到一组具体的数.
比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是
=(Ey)^H*(Ex)=y^H*G*x
这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法.
当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算.
一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数).
在有了基之后抽象的线性变换也就可以用具体的矩阵来描述了.
这里的道理是一样的,用Gram矩阵可以把抽象的内积转化到一组具体的数.
比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是
=(Ey)^H*(Ex)=y^H*G*x
这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法.
当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算.
关于欧几里德空间的一个问题
赋范线性空间与Banach空间、度量空间、内积空间的,希尔伯特空间之间的关系
matlab怎么用斯密特正交化计算欧几里德空间的向量
a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为...
请问向量内积是怎么定义的?
设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.
关于数列极限与度量空间的题目
关于向量的内积向量内积公式是怎么来的?有什么原因发明他的人要那样规定,而且向量乘以向量是常数
高等代数的问题:谁能给矩阵A,B(A,B属于n阶矩阵)定义个内积,使这个n阶矩阵是欧式空间?急,
怎么用扩展欧几里德算法求逆元 写一个容易理解的例子最好不过
欧几里德的和是一回事吗?
关于度量空间在度量空间中,所谓极限点就是在p的任意给定邻域内,都存在点q,使q属于集合E,同时,当集合E所有的极限点都是