已知:正方形ABCD,E在AB上,延长AD至F,使DF=BE,连接EF交BD于G
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:11:33
已知:正方形ABCD,E在AB上,延长AD至F,使DF=BE,连接EF交BD于G
(1)求证:BG=DG+1/2DF
(2)若正方形边长AD=3,EF=2√5,求G到AD的距离
(1)求证:BG=DG+1/2DF
(2)若正方形边长AD=3,EF=2√5,求G到AD的距离
(1)应该是求证:BG=DG+√2DF
作垂线FH与BD的延长线交于H
则FH=DF=BE
∵∠HGF=∠BGE(对顶角)
∠H=∠EBG(内错角)
∴△EBG≌△HFG
∴BG=GH
而GH=GD+DH=GD+√2DF
∴BG=GD+√2DF
(2)由勾股定理得:
AE²+AF²=EF²
(3-BE)²+(3+DF)²=(2√5)²
解得:DF=1
而AE=3-1=2,G是EF的中点(EG=GF)
所以G点到AD的距离等于AE的一半为1
作垂线FH与BD的延长线交于H
则FH=DF=BE
∵∠HGF=∠BGE(对顶角)
∠H=∠EBG(内错角)
∴△EBG≌△HFG
∴BG=GH
而GH=GD+DH=GD+√2DF
∴BG=GD+√2DF
(2)由勾股定理得:
AE²+AF²=EF²
(3-BE)²+(3+DF)²=(2√5)²
解得:DF=1
而AE=3-1=2,G是EF的中点(EG=GF)
所以G点到AD的距离等于AE的一半为1
已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF
已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF的中点.
正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F 是直线AD上一点,BE=DF,连接EF交线段BD于点
如图,在平行四边形ABCD中,延长AB到E,使BE=1/2AB,延长CD到F,使DF=DG,EF交BC于G,交AD于H,
如图,在平行四边形ABCD中,延长AB到E,使BE=1/2AB,延长CD到F,使DF=DG,EF交BC于G,交AD于H
已知在正方形ABCD中,BE平分角DBC,交CD于点E.延长BC至点F,使CF=CE.连接DF,交BE于点G求证BG⊥D
如图 已知在正方形ABCD中,E为CB延长线上一点,F在AD边上 且BE=DF,EF与AC交于点O
在正方形ABcD中,E、F分别是AD、CD上的点,AE=ED,DF=4/1DC ,连接EF并延长交BC的延长线于点G,若
平行四边形问题,在平行四边形ABCD中,E、F在AB的延长线上,BE=AB,BF=BD,CE与DF交于点G,已知DCEB
E,F,分别是正方形ABCD的边AB,BC上的点,EF∥AC,G在AD的延长线上,且AG=AD,GE的延长线交DF于H.
在正方形ABCD中,点E、F分别在BC和CD上,AE=AF,BE=DF.连接AC交EF于点O,延长OC至点M,使OM=O
正方形ABCD中,AC与BD相交于点O,E为AD上的一点,连接BE,点G在BE上,连接DG并延长交AD于点F,若∠FGE