证明:设f(x)= anxn+an-1xn-1+…+a1x+a0是整系数多项式,若d|b-c,则d|f(b)-f(c).
使用秦九朝算法求f(x)=anxn+an-1xn-1+...+a1x+a0当X=2的值时 最多做几次加法和几次乘法
(理) 已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,则自然数n
证明:如果∫f(x)d×=f(x)+c则∫f(ax+b)dx=1/af(ax+b)+c其中a,b
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c
设f(x)是连续函数,则d(∫下0上xf(x-t)dt)/dx=(); a.f(0),b.-f(0),c.f(x),d.
已知函数f(x)=a1x+a2x2+a3x3+…+anxn(n∈N*),且a1,a2,…,an构成一个数列,又f(1)=
数论题,求解.设f(x)为一多项式,a,b,c,d为整数.已知f(a)=f(b)=f(c)=f(d)=7, 求证:不存在
设f(x)可微,则df(x)=( ) A.f'(x)dx B.e^f(x) dx C.f'(x) e^f(x) dx D
高等代数题(多项式)证明:设 f(x)是整系数多项式,且 f(1)=f(2)=f(3)=p,,则不存在整数m,使 f(m
a0+0.5a1+.+an/(n+1)=0,证明f(x)=a0+a1x+..+anx^n在(0,1)内至少有1个零根
设f(x)的导数为cosx,则f(x)的原函数是()A:1+sinx B:1-sinx C:1+cosx D:1-cos
多项式 f(x)=x^4+ax^3+bx^2+cx+d 的系数均为实数,且f(2i)=f(2+i)=0.求a+b+c+d