作业帮 > 数学 > 作业

求不定积分 dx/(9x^2+1)^(1/2)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 09:10:48
求不定积分 dx/(9x^2+1)^(1/2)
求不定积分 dx/(9x^2+1)^(1/2)
∫ dx/√(9x² + 1)
= ∫ dx/√[(3x)² + 1)]
令3x = tanθ,3 dx = sec²θ dθ
原式 = ∫ ((1/3)sec²θ dθ)/√(tan²θ + 1)
= (1/3)∫ sec²θ/secθ dθ
= (1/3)∫ secθ dθ
= (1/3)ln|secθ + tanθ| + C
= (1/3)ln|3x + √(9x² + 1)| + C
笔记:tanθ = 3x,则sinθ = 3x/√((3x)² + 1) = 3x/√(9x² + 1),而cosθ = 1/√(9x² + 1)
则secθ = 1/cosθ = √(9x² + 1)
或直接用积分表公式:∫ dx/√(x² + a²) = ln|x + √(x² + a²)| + C
则∫ dx/√(9x² + 1) = ∫ dx/[3√(x² + 1/9)]
= (1/3)∫ dx/√(x² + (1/3)²) = (1/3)ln|x + √(x² + (1/3)²)| + C
= (1/3)ln|x + √(9x² + 1)/3| + C
= (1/3)ln|3x + √(9x² + 1)| + C