作业帮 > 数学 > 作业

在三角形ABC中,a+b=2c,∠A—∠C=60°,就sinB等于多少

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 04:47:04
在三角形ABC中,a+b=2c,∠A—∠C=60°,就sinB等于多少
在三角形ABC中,a+b=2c,∠A—∠C=60°,就sinB等于多少
A+B=2C,由正弦定理得sinA+sinB=2sinC
得:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=∏
∵sin[(A+C)/2]=sin[(∏-B)/2]=sin(∏/2-B/2)=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2)
√3*cos(B/2)=4sin(B/2)cos(B/2)
sin(B/2)=(√3)/4
cos(B/2)=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8