为什么说f(x)在x0某一去心邻域内有界是limx→x0f(x)存在的必要条件而不是充分条件?
极限limx→x0f(x)存在是函数f(x)在点x=x0处连续的( )
设函数y=f(x)在点x0的某一邻域内有定义,证明:f'(x0)=A的充分必要条件是f_'(x0)=f+'(x0)=A
若limx→x0f(x)存在,limg(x)不存在,那么limx→x0【f(x)+、-g(x)】与limx→x0【f(x
函数f(x)在点x0处有定义是limx趋近于x0 f(x)存在的什么条件?A必要B充分C充要D无关
设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是
f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
为什么函数f(x,y)在点(x0,y0)处偏导数存在,是函数f(x,y)在该点连续的既不充分也不必要条件?
导数判定函数单调性一个函数f(x)在X0的导数>0,则存在a>0在X0去心邻域(X0-a,X0+a)使得f(x)是单调上
关于函数极限的疑问设函数f(x)在点x0的某一去心邻域内有定义 如果存在常数A 对于任意给定的正数ε(不论它多么小) 总
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等
关于函数定义疑问1请教:1、对于函数极限的定义,是这么说的:设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A
函数f(X)在X=Xo有定义是lim(X→Xo)f(X)存在的() A充分条件 B必要条件 C充要条件 D无关条件