在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-1\3.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:25:05
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-1\3.
(1)求动点P的轨迹方程.
(2)若M,N是点P轨迹上关于原点对称的两点,求证直线MP与NP的斜率之积为定值
(1)求动点P的轨迹方程.
(2)若M,N是点P轨迹上关于原点对称的两点,求证直线MP与NP的斜率之积为定值
1设P点的坐标是(x,y)
据题意有:[(y-1)/(x+1)]×[(y+1)/(x-1)]=-1/3
整理得x^2/3+y2=4/3
∴P点的轨迹方程是一个椭圆
2设M点的坐标是(-m,n) ,N点的坐标是(m,-n) 这里设m>0,n>0,设P点的坐标是(x,y)
据题意M、N、P都是椭圆上的点
∴m^2/3+n^2=4/3
x^2/3+y^2=4/3
二式相减有:(y^2-n^2)/(x^2-m^2)=-1/3
直线MP的斜率:(y-n)/(x+m)
直线NP的斜率(y+n)/(x-m)
二斜率相乘得:(y^2-n^2)/(x^2-m^2)=-1/3
∴在此椭圆上,任意两个关于原点对称的点与椭圆上任意一点的直线的斜率乘积是定值.
据题意有:[(y-1)/(x+1)]×[(y+1)/(x-1)]=-1/3
整理得x^2/3+y2=4/3
∴P点的轨迹方程是一个椭圆
2设M点的坐标是(-m,n) ,N点的坐标是(m,-n) 这里设m>0,n>0,设P点的坐标是(x,y)
据题意M、N、P都是椭圆上的点
∴m^2/3+n^2=4/3
x^2/3+y^2=4/3
二式相减有:(y^2-n^2)/(x^2-m^2)=-1/3
直线MP的斜率:(y-n)/(x+m)
直线NP的斜率(y+n)/(x-m)
二斜率相乘得:(y^2-n^2)/(x^2-m^2)=-1/3
∴在此椭圆上,任意两个关于原点对称的点与椭圆上任意一点的直线的斜率乘积是定值.
急在平面直角坐标系XOY中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-1/3.
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-1/3
在平面直角坐标系xoy中,点B与A(-1,1)点关于原点O对称,P为动点,且直线AP与BP的斜率之积等于−12.
在直角坐标系xoy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-1/3
在平面直角坐标系中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于−13
在平面直角坐标系xoy中,点B与点A关于原点对称,p为一动点,且直线AP与直线BP的斜
已知点B与点A(-1,1)关于原点O对称,且直线AP与BP的斜率之积等于-1/3
在平面直角坐标系中A(-2,0),B(2,0)点P为动点,且直线AP与直线BP的斜率之积为-3/4 1.求动点P的轨迹C
在直角坐标系平面内,o为原点,点a的坐标为(1,0)点c的坐标为(0,4),直线cm平平行X轴,点B与点A关于原点对称,
在平面直角坐标系xoy中,已知定点A(-4.0)B(4.0).动点p与A,B连线的斜率之积为-1/4,求点p轨迹方晨
在平面直角坐标系中,点A(1,2,3)关于xOy平面对称点为点B,关于原点的对称点为点C,则B,C间的距离是..
在直角坐标系xoy中在平面直角坐标系xoy中,若与点A(2,2)的距离为1且与点B(m,0)的距离为3的直线恰有