如何建立[0,1]到R的一一对应的映射?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:08:24
如何建立[0,1]到R的一一对应的映射?
即:f:[0,1]-->R
x |->
注意是闭区间[0,1]——感谢sunshine同学提醒
是一一对应,单射+满射
即:f:[0,1]-->R
x |->
注意是闭区间[0,1]——感谢sunshine同学提醒
是一一对应,单射+满射
建立[0,1]到R的一一对应的映射
这是一个"实变函数"课程中的典型问题,要用到集合"势"的概念.
在讲此题前,我先形象地说说"集合势",集合分有限集和无限集,
有限集的"势",就是元素的个数; 而对于无限集来说,它也有"哪一个无限集里的元素多"的比较.所以,针对无限集,元素个数的多少,就要用到"势"的概念.
如果两个集合A,B的势相等,我们就说"这两个无限集里的元素个数是一样多的"
那么如何说明"两个无限集里的元素个数是一样多的"呢?
这个问题对于有限集,很简单,分别数一下两个元素的个数,如果个数相等即可.但是当它们是无限集,你就没有办法数了.因为你数来数去它们都是无穷多个,永远也数不完.
这时,"实变函数"论里,就提出了判断两个无限集势大小的方法,就是利用了"一一对应(或者叫双射,既满又单),也就是说,如果两个无限集,找到一个映射f,而且f是一个双射,那么这两个集合就等势.所以,你的问题,其实就是要找[0,1]到R的双射f,即如果这个双射f是存在的,那么[0,1]与R等势.
事实上,我可以告诉你[0,1]与R是等势的.即这样的双射f存在.
为什么这样说呢,我分两步告诉你,
第一步,你要证明(0,1)与R等势
第二步,你要证明[0,1]与(0,1)等势
这样,由“等势”关系的传递性,知[0,1]与R等势
第一步,(0,1)与R等势,这非常好证明,因为
ctan(x) 就是一个从(0,pi)到R上的双射,因此,我把定义域(0,pi)压缩一下,自变量乘以pi,即为
g(x)=ctan(pi*x)就是一个从(0,1)到R上的双射.所以这样的双射找到了,是g(x)=ctan(pi*x).因此(0,1)与R等势
第二步,证明[0,1]与(0,1)等势
这里你一开始理解可能无从下手,但是有一个技巧,也就是要找一个从[0,1]到(0,1)的双射,是这样找的.
首先,把[0,1]和(0,1)分别分解如下:
[0,1]=(0,1)\Q ∪ (Q∪{0}∪{1})
(0,1)=(0,1)\Q ∪ Q
上面的Q={1/n | n=2,3,4,.}是的集合(这是一个“可列集”,它是“势最小的”无限集)
这样我们其实把[0,1]和(0,1)都分解成了两部分
在它们的公共部分(0,1)\Q到(0,1)\Q上,我取一个恒等映射idx(x) 这里x∈(0,1)\Q
在它们的不同部分(Q∪{0}∪{1})到Q上,我取映射h(x),
h(x)=
{
若x=0,h(x)=1/2;
若x=1,h(x)=1/3;
若x∈Q,即x=1/n (n=2,3,4...) ,则h(x)=h(1/(n+2)) (n=2,3,4.)
}
h(x)中的x∈(Q∪{0}∪{1})
于是我令
p(x)=
{
若x∈(0,1)\Q,p(x)=idx(x);
若x∈(Q∪{0}∪{1}),p(x)=h(x);
}
这样构造出来的p(x)就是一个从[0,1]到(0,1)上的双射
也就证明了[0,1]与(0,1)等势
综合,第一步和第二步,我再取
f(x)=g(p(x))
即,f(x)是先从[0,1]通过p映到(0,1),再通过g由(0,1)映到R
就是让f是p与g的复合函数.
这样构造的f显然是双射,因为p与g都是双射.
所以你要的f找到了,同时也说明了[0,1]与R是等势的.
---------------------------------------------------
最后整理一下你要的f(x)一一对应表达式,
f(x)=g(p(x)),
其中
g(x)=ctan(pi*x),
p(x)={
若x∈(0,1)\Q,p(x)=idx(x);
若x∈(Q∪{0}∪{1}),p(x)=h(x);
}
这里的
idx(x)是等恒映射,
h(x)=
{
若x=0,h(x)=1/2;
若x=1,h(x)=1/3;
若x∈Q,即x=1/n (n=2,3,4...) ,则h(x)=h(1/(n+2)) (n=2,3,4.)
}
这就是你要的答案
---------------------------------------------------------------------
这是一个"实变函数"课程中的典型问题,要用到集合"势"的概念.
在讲此题前,我先形象地说说"集合势",集合分有限集和无限集,
有限集的"势",就是元素的个数; 而对于无限集来说,它也有"哪一个无限集里的元素多"的比较.所以,针对无限集,元素个数的多少,就要用到"势"的概念.
如果两个集合A,B的势相等,我们就说"这两个无限集里的元素个数是一样多的"
那么如何说明"两个无限集里的元素个数是一样多的"呢?
这个问题对于有限集,很简单,分别数一下两个元素的个数,如果个数相等即可.但是当它们是无限集,你就没有办法数了.因为你数来数去它们都是无穷多个,永远也数不完.
这时,"实变函数"论里,就提出了判断两个无限集势大小的方法,就是利用了"一一对应(或者叫双射,既满又单),也就是说,如果两个无限集,找到一个映射f,而且f是一个双射,那么这两个集合就等势.所以,你的问题,其实就是要找[0,1]到R的双射f,即如果这个双射f是存在的,那么[0,1]与R等势.
事实上,我可以告诉你[0,1]与R是等势的.即这样的双射f存在.
为什么这样说呢,我分两步告诉你,
第一步,你要证明(0,1)与R等势
第二步,你要证明[0,1]与(0,1)等势
这样,由“等势”关系的传递性,知[0,1]与R等势
第一步,(0,1)与R等势,这非常好证明,因为
ctan(x) 就是一个从(0,pi)到R上的双射,因此,我把定义域(0,pi)压缩一下,自变量乘以pi,即为
g(x)=ctan(pi*x)就是一个从(0,1)到R上的双射.所以这样的双射找到了,是g(x)=ctan(pi*x).因此(0,1)与R等势
第二步,证明[0,1]与(0,1)等势
这里你一开始理解可能无从下手,但是有一个技巧,也就是要找一个从[0,1]到(0,1)的双射,是这样找的.
首先,把[0,1]和(0,1)分别分解如下:
[0,1]=(0,1)\Q ∪ (Q∪{0}∪{1})
(0,1)=(0,1)\Q ∪ Q
上面的Q={1/n | n=2,3,4,.}是的集合(这是一个“可列集”,它是“势最小的”无限集)
这样我们其实把[0,1]和(0,1)都分解成了两部分
在它们的公共部分(0,1)\Q到(0,1)\Q上,我取一个恒等映射idx(x) 这里x∈(0,1)\Q
在它们的不同部分(Q∪{0}∪{1})到Q上,我取映射h(x),
h(x)=
{
若x=0,h(x)=1/2;
若x=1,h(x)=1/3;
若x∈Q,即x=1/n (n=2,3,4...) ,则h(x)=h(1/(n+2)) (n=2,3,4.)
}
h(x)中的x∈(Q∪{0}∪{1})
于是我令
p(x)=
{
若x∈(0,1)\Q,p(x)=idx(x);
若x∈(Q∪{0}∪{1}),p(x)=h(x);
}
这样构造出来的p(x)就是一个从[0,1]到(0,1)上的双射
也就证明了[0,1]与(0,1)等势
综合,第一步和第二步,我再取
f(x)=g(p(x))
即,f(x)是先从[0,1]通过p映到(0,1),再通过g由(0,1)映到R
就是让f是p与g的复合函数.
这样构造的f显然是双射,因为p与g都是双射.
所以你要的f找到了,同时也说明了[0,1]与R是等势的.
---------------------------------------------------
最后整理一下你要的f(x)一一对应表达式,
f(x)=g(p(x)),
其中
g(x)=ctan(pi*x),
p(x)={
若x∈(0,1)\Q,p(x)=idx(x);
若x∈(Q∪{0}∪{1}),p(x)=h(x);
}
这里的
idx(x)是等恒映射,
h(x)=
{
若x=0,h(x)=1/2;
若x=1,h(x)=1/3;
若x∈Q,即x=1/n (n=2,3,4...) ,则h(x)=h(1/(n+2)) (n=2,3,4.)
}
这就是你要的答案
---------------------------------------------------------------------
如何建立Excel表格的一一对应的函数关系式?
求证|[0,1]|=|(0,1)|.也就是要举出一个从[0,1]映射到(0,1)的一一对应的函数
设集合M={a,b,c} N={-1,0,1} 求M到N一一对应映射的个数?
已知集合A={x|0≤x≤3},B={y|0≤y≤1}.判断下列对应是否是从集合A到集合B的映射?是否是一一映射?
集合的映射下列从集合到集合的对应中为映射的是A.A=B=N+,对应法则:f:x→y=|x-3|B.A=R,B={0,1}
映射与一一映射的区别?
映射的已知集合A={x,y},B={0,1}构造集合A到集合B的映射,试问能构造多少种映射?其中有多少是一一映射?要说下
一一映射是不是说两个集合里的元素个数相同且一个集合到另一个集合每个元素都是一一对应
设M={1,2,3,4,5,6,7,8,9,10},由M到M的一一映射中,有7个数字和自身对应的映射个数是多少
已知集合A={x,y},B={-1,0,1}.构造从集合A到集合B的映射,试问能构造出多少种映射?其中有多少是一一映射?
A=R,B=R,对应法则f:“求绝对值”对应法则是集合A到B的映射吗?
下列对应不是A到B的映射的是