谢谢老师,19题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:46:42
解题思路: (1)连接A1C1、AC和BD交于O,连接C1O.证明BD垂直平面平面AC1内的两条相交直线AC,C1O,即可证明C1C⊥BD; (2)当时,能使A1C⊥平面C1BD,A1C与C1O相交于G,说明点G是正三角形C1BD的中心,证明CG⊥平面C1BD,即可证明A1C⊥平面C1BD.
解题过程:
(1)证明:如图,连接A1C1、AC和BD交于O,连接C1O.
∵四边形ABCD是菱形,
∴AC⊥BD,BC=CD.
又∵∠BCC1=∠DCC1,C1C=C1C,
∴△C1BC≌△C1DC,
∴C1B=C1D,
∵DO=OB
∴C1O⊥BD,
但AC⊥BD,AC∩C1O=O,
∴BD⊥平面AC1,
又C1C⊂平面AC1,
∴C1C⊥BD.
(2)当时,能使A1C⊥平面C1BD.
∵,
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱锥C-C1BD是正三棱锥.
设A1C与C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD边上的高和中线,
∴点G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.
解题过程:
(1)证明:如图,连接A1C1、AC和BD交于O,连接C1O.
∵四边形ABCD是菱形,
∴AC⊥BD,BC=CD.
又∵∠BCC1=∠DCC1,C1C=C1C,
∴△C1BC≌△C1DC,
∴C1B=C1D,
∵DO=OB
∴C1O⊥BD,
但AC⊥BD,AC∩C1O=O,
∴BD⊥平面AC1,
又C1C⊂平面AC1,
∴C1C⊥BD.
(2)当时,能使A1C⊥平面C1BD.
∵,
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱锥C-C1BD是正三棱锥.
设A1C与C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD边上的高和中线,
∴点G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.