作业帮 > 数学 > 作业

高一三角函数应用题列题,越多越好,急练

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/07 20:42:28
高一三角函数应用题列题,越多越好,急练
高一三角函数应用题列题,越多越好,急练
1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A
1+cos2A-cos2B-cos2C=2sinBsinC
2cos²A-1-2cos²B+1+2sin²C=2sinBsinC
cos²A-cos²B+sin² (A+B)=sinBsinC
cos²A-cos²B+sin²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
cos²A-cos²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
2cos²AsinB+2sinAcosAcosB=sin(180-A-B)
2cosA(cosAsinB+sinAcosB)-sin(A+B)=0
Sin(A+B)(2cosA-1)=0
cosA=1/2
A=60
2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα
1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)²
1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa
0=0恒成立
以上各步可逆,原命题成立
证毕
3、在△ABC中,sinB*sinC=cos²(A/2),则△ABC的形状是?
sinBsin(180-A-B)=(1+cosA)/2
2sinBsin(A+B)=1+cosA
2sinB(sinAcosB+cosAsinB)=1+cosA
sin2BsinA+2cosAsin²B-cosA-1=0
sin2BsinA+cosA(2sin²B-1)=1
sin2BsinA-cosAcos2B=1
cos2BcosA-sin2BsinA=-1
cos(2B+A)=-1
因为A,B是三角形内角
2B+A=180
因为A+B+C=180
所以B=C
三角形ABC是等腰三角形
4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合
-1≤cos(x/3)≤1
-1≤-cos(x/3)≤1
1≤2-cos(x/3)≤3
值域[1,3]
当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z}
当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6kπ+3π,k∈Z}
5、已知△ABC,若(2c-b)tanB=btanA,求角A
[(2c-b)/b]sinB/cosB=sinA/cosA
正弦定理c/sinC=b/sinB=2R代入
(2sinC-sinB)cosA=sinAcosB
2sin(A+B)cosA=sinAcosB+cosAsinB
2sin(A+B)cosA-sin(A+B)=0
sin(A+B)(2cosA-1)=0
sin(A+B)≠0
cosA=1/2
A=60度
6、已知2cosx=3cosy求证:3cosx-2cosy/2siny-3sinx=tan(x+y)
证明:3cosx-2cosy/2siny-3sinx=tan(x+y)
(3cosx-2cosy)/(2siny-3sinx)=sin(x+y)/cos(x+y)
(3cosx-2cosy)/(2siny-3sinx)=(sinxcosy+cosxsiny)/(cosxcosy-sinxsiny)
3cos²xcosy-3cosxsinxsiny-2cosxcos²y+2sinxcosxsiny=2sinxsinycosy+2sin²ycosx-3sin²xcosy-3sinxcosxsiny
3cos²xcosy+3sin²xcosy=2sin²ycosx+2cos²ycosx
3cosy(sin²x+cos²x)=2cosx(sin²y+cos²y)
3cosy=2cosx已知
所以以上各步可逆
原命题成立
7、已知△ABC中,sinB+sinC=√2sinA,且边长a=4,若S△ABC=3sinA,求cosA的值
正弦定理a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆半径)
sinA=a/2R,sinB=b/2R,sinC=c/2R
代入b/2R+c/2R=4√2/2R
b+c=4√2(1)
1/2bcsinA=3sinA
bc=6(2)
(1)平方
b²+2bc+c²=32
b²+c²=20
余弦定理cosA=(b²+c²-a²)/(2bc)=(20-16)/12=1/3
8、在三角形ABC中,角ABC的对边分别为abc已知sin^2*2C+sin2CsinC+cos2C=1.且a+b=5,c=跟号7求(1)角C的大小(2)三角形ABC的面积
sin²2C+sin2CsinC+cos2C=1
sin2CsinC+cos2C=cos²2C
2sin²CcosC+cos2C(1-cos2C)=0
2sin²CcosC+2sin²Ccos2C=0
C不为0
所以
cosC+cos2C=0
2cos²C+cosC-1=0
(2cosC-1)(cosC+1)=0
cosC=1/2或cosC=-1(舍去)
C=π/3
余弦定理
cosC=(a²+b²-c²)/(2ab)
1/2=[(a+b)²-2ab-c²]/(2ab)
3ab=18
ab=6
S三角形ABC=1/2absinC=1/2×6×sin60=3√3/2
9、π/4