设R^3中向量组A:a1=(2,-1,0) a2=(1,0,1) a3=(4,-3,2)证明a1,a2,a3线性无关
设向量组a1,a2,a3线性无关,证明:向量组B1=a1+2a2+a3,B2=a1+a2+a3,B3=a1+3a2+4a
证明向量组a1=(0,1,1),a2=(1,2,3),a3=(2,3,4) 线性无关.
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不
3、设向量组a1,a2,a3线性无关.证明:向量组a1-a2-2a3,a2-a3,a3也线性无关.
设矩阵A=(a1,a2,a3)其中a2,a3线性无关,a1+2a2-a3=0,向量β=a1+2a2+3a3则Ax=β的通
线性代数 设向量组a1,a2,a3线性无关,证明向量组B1=a1+a2-2a3,B2=a1-a2-a3...
设向量组a1,a2,a3 线性无关,又向量组b1=a1+a2+a3 ,b2=a1+2a2-a3,b3=a1-a2+2a3
设向量组a1,a2,a3线性相关,而向量组a2,a3,a4线性无关.证明:(1)a1能由a2,a3表示;(2)a4不能由
设 a1=(0,3,1,2),a2=(1,-1,2,4)a3=(3,0,7,13)则a1,a2 ,a3的一个极大线性无关
若向量组a1,a2,a3线性无关,证明向量组b=a1+2a2,b2=a2+2a3,b3=a3+2a1线性无关
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,