设{an}的公比不为1的等比数列,其前n项和为sn,且a5,a3,a4成等差数列.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:40:59
设{an}的公比不为1的等比数列,其前n项和为sn,且a5,a3,a4成等差数列.
1,求{an}公比.2,证明对任意k(正数),s(k+2),sk,s(k+1)成等差数列.
1,求{an}公比.2,证明对任意k(正数),s(k+2),sk,s(k+1)成等差数列.
(1)数列{an}是公比不为1的等比数列且a5,a3,a4成等差数列,则2a3=a4+a5,即q^2+q-2=0,解得q=1(舍)或q=-2
(2)S(k+2)+S(k+1)=[a1(1-q^(k+2)]/(1-q)+[a1(1-q^(k+1)]/(1-q)=[a1/(1-q)][2-q^(k+2)-q^(k+1)] =[a1/(1-q)][2-q^k(q^2+q)]=[a1/(1-q)][2-2q^k]
Sk=[a1/(1-q)][1-q^k
故S(k+2)+S(k+1)= 2Sk即对任意k(正数),s(k+2),sk,s(k+1)成等差数列
(2)S(k+2)+S(k+1)=[a1(1-q^(k+2)]/(1-q)+[a1(1-q^(k+1)]/(1-q)=[a1/(1-q)][2-q^(k+2)-q^(k+1)] =[a1/(1-q)][2-q^k(q^2+q)]=[a1/(1-q)][2-2q^k]
Sk=[a1/(1-q)][1-q^k
故S(k+2)+S(k+1)= 2Sk即对任意k(正数),s(k+2),sk,s(k+1)成等差数列
设{an}的公比不为1的等比数列,其前n项和为sn,且a5,a3,a4成等差数列.
已知{an}是首项为1,公比为q的等比数列,且a4,a6,a5成等差数列,求an的前n项和Sn
在公比不为1的等比数列{an}中,前n项的和为Sn,若S2,S4,S3成等差数列,则a2,a4,a3成等差数列.
已知等差数列an的公差不为零 其前n项和为sn.若a1、a4、a5成等比数列,且s6=5a3-1(5倍a3减1),(1)
已知数列an是首项为4公比为q的等比数列,sn是其前n项和,且4a1,a5,-2a3成等差数列,求设An=S1+S2+…
设等比数列的前n项和为sn,a4=a1-9,a5,a3,a4成等差数列
设{an}是公比大于1的等比数列,Sn为其前n项和,且S3=7,a1+3、3a2、a3+4构成等差数列.
已知数列{an}是首项a1=4,公比q不等于1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列
已知数列an是首项为a 且公比q不等于一1的等比数列 sn是其前n项和 a1 2a7 3a4成等差数列
已知数列an是首项为a且公比q不等于1的等比数列,Sn是其前n项和,a1,2a7,3a4成等差数列.
等差数列啊!设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则其前n项和Sn=?
已知前n项和为Sn的等差数列{an}的公差不为零,且a2=3,又a4,a5,a8成等比数列