设x,y,z∈R+.求证:x^4+y^4+z^4≥(x+y+z)xyz
3^x=4^y=6^z 求证1/z-1/x=1/zy 比较3x.4y 6z的大小 xyz∈R+
设x,y,z 都属于R,且(x-z)²-4(x-y)(y-z)=0,求证:x,y,z成等比数列.
设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0
证明 已知xyz∈R^+, x^2x * y^2y* z^2z≥x^y+x* y^z+x * z^x+y
设x,y,z∈R+,且3x=4y=6z.
设x.y.z满足3x=4y=6z(x.y.z都是指数)求证
设xyz均为正实数,且x+y+z=1,求证1/x+4/y+9/z≥36
设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(
设 x,y∈R ,且3^x=4^y=6^z,求证 1/z - 1/x =1/2y .
已知x,y,z属于R+(正实数),且xyz(x+y+z)=4+2*根号下3,则(x+y)(y+z)的最小值是?
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
设x,y,z属于R且3^x=4^y=6^z