设S是实数组成的集合,且当a∈S时,1/(1-a)∈S.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 10:54:17
设S是实数组成的集合,且当a∈S时,1/(1-a)∈S.
设S是实数组成的集合,且当a∈S时,1/(1-a)∈S.
(1)如果3∈S,求证:S中至少含有3个元素.
(2)S能否为单元素集合?请说明理由.
(3)如果a∈S,那么S中至少有几个元素?
设S是实数组成的集合,且当a∈S时,1/(1-a)∈S.
(1)如果3∈S,求证:S中至少含有3个元素.
(2)S能否为单元素集合?请说明理由.
(3)如果a∈S,那么S中至少有几个元素?
(1)
3∈S,根据性质,有
1/(1-3)∈S,即-1/2∈S
1/[1-(-1/2)]∈S,2/3∈S
1/(1-2/3)∈S,3∈S
所以,另两个元素是-1/2,2/3.即S中至少含有3个元素
(2)
若S中只有一个元素,设这个元素是M
则由性质可知,1/(1-M)∈S
因为S只有一个元素,所以M与1/(1-M)是同一个元素
M=1/(1-M)
M(1-M)=1
M-M²=1
M²-M+1=0
该方程没解,所以M值不存在
即S不可能只有一个元素
(3)
a∈S,则1/(1-a)∈S
1/(1-a)∈S,所以1/[1-1/(1-a)]∈S
1/[1-1/(1-a)]=1/[(1-a-1)/(1-a)]
=(1-a)/(-a)
=(a-1)/a
所以1/(1-a)∈S,则(a-1)/a∈S
所以(a-1)/a则1/[1-(a-1)/a]∈S
1/[1-(a-1)/a]=1/[(a-a+1)/a]=1/(1/a)=a
所以(a-1)/a则a∈S
这样形成循环
即a,1/(1-a)和(a-1)/a∈S ,那么S中至少有3个元素
3∈S,根据性质,有
1/(1-3)∈S,即-1/2∈S
1/[1-(-1/2)]∈S,2/3∈S
1/(1-2/3)∈S,3∈S
所以,另两个元素是-1/2,2/3.即S中至少含有3个元素
(2)
若S中只有一个元素,设这个元素是M
则由性质可知,1/(1-M)∈S
因为S只有一个元素,所以M与1/(1-M)是同一个元素
M=1/(1-M)
M(1-M)=1
M-M²=1
M²-M+1=0
该方程没解,所以M值不存在
即S不可能只有一个元素
(3)
a∈S,则1/(1-a)∈S
1/(1-a)∈S,所以1/[1-1/(1-a)]∈S
1/[1-1/(1-a)]=1/[(1-a-1)/(1-a)]
=(1-a)/(-a)
=(a-1)/a
所以1/(1-a)∈S,则(a-1)/a∈S
所以(a-1)/a则1/[1-(a-1)/a]∈S
1/[1-(a-1)/a]=1/[(a-a+1)/a]=1/(1/a)=a
所以(a-1)/a则a∈S
这样形成循环
即a,1/(1-a)和(a-1)/a∈S ,那么S中至少有3个元素
设实数集S是满足下面条件的集合①1∈S,②若a∈S,则(1-a)/1
设S是由满足下列条件的实数所构成的集合:求证:若a∈S,且a≠0,则1-(1/a)∈S.
设S是满足下列两个条件的实数所构成的集合:①1∉S;②若a∈S(解题步骤不懂)
设S是满足下列两个条件的实数所构成的集合:(1)1不属于S;(2)若a∈S,则1/1-a∈S.求证1-1/a∈S
设S是满足下列条件的实数所构成的集合:1.0不属于S,1不属于S;2.a∈S,则1/1-a∈S.试证明:1.S不可能是单
高中数学题:设实数集S是满足下面条件的集合①1∈S,②若a∈S,则(1-a)/1 证明 若a∈S
设集合中S的元素为实数,且满足条件,①S内不含数字1.②若a属于S,则必有1/1-a属于S
已知S是由实数构成的集合,且满足1)1不属于S;2)若a属于S,则1/1-a属于S.
高一第一课的数学题.设集合S中的元素为实数,且满足条件 ①S内不含1 ②若a∈S,则必为1/1-a∈S 1.证明:若2∈
设集合S={1,2,...,9},集合A={a1,a2,a3}是S的子集,且a1
已知集合S满足1∈S,且当 a∈S时1/ 1-a∈S ,若2∈S,试判断1/2是否属于S,说明你的理由.
设S是由满足下列两个条件的实数所构成的集合:(1)1不属于S (2)若a属于S,则1/(1-a)