懂得进.证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:28:04
懂得进.
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
数学归纳法
或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
【证明】Sin A+sin B=2Sin 22
证明sin(a+b)sin(a-b)=sin^2 a-sin^2 b,
证明三角函数等式sin(A+B)-sinA=2cos(A+B/2)sin(B/2)
已知3SIN^2A+2SIN^2B=5SINA,求SIN^2A+SIN^2B范围
证明sin(a+b)sin(a-b)=sin^2 a-sin^2 b, 并利用该式计算sin^2 20度=sin 80度
证明sin(a+b)sin(a-b)=(sina+sinb)(sina-sinb)
为什么sin(a+b)-sina=2sin(b/2)cos(a+b/2)
证明 sin^2A+sin^2B-sin^2A*sin^2B+cos^2A*cos^2
证明sin(2a+b)/sina-2cos(a+b)=sinb/sina
如何证明sin(A-B)*sin(A+B)=sinA²-sinB²
若sin^4a/sin^2b+cos^4a/cos^2b=1,证明sin^4b/sin^2a+cos^4b/cos^2a
为什么sinA-sinB/sinA+sinB=cos[(A+B)/2]sin[(A-B)/2]/{sin[(A+B)/2