作业帮 > 数学 > 作业

懂得进.证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:28:04
懂得进.
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
懂得进.证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(
数学归纳法
或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)