作业帮 > 数学 > 作业

y=(sinx^4+cosx^4+sinx^2*cosx^2)/2-sin2x的最值和最小正周期

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:28:53
y=(sinx^4+cosx^4+sinx^2*cosx^2)/2-sin2x的最值和最小正周期
y=(sinx^4+cosx^4+sinx^2*cosx^2)/2-sin2x的最值和最小正周期
y = [(sinx)^4 + (cosx)^4 + (sinx)^2(cosx)^2]/2 - sin(2x)
= [(sinx)^4 + (cosx)^4 + 2(sinx)^2(cosx)^2 - (sinx)^2(cosx)^2]/2 - sin(2x)
= [1 - (sinx)^2(cosx)^2]/2 - sin(2x)
= 1/2 - [sin(2x)]^2/8 - sin(2x)
= {4 - 8sin(2x) - [sin(2x)]^2}/8
= {20 - 16 - 8sin(2x) - [sin(2x)]^2}/8
= {20 - [4 + sin(2x)]^2}/8
-5/8 = {20 - [4 + 1]^2}/8