作业帮 > 数学 > 作业

已知,函数f(x)=2sin(2x+π/6)+1求它在[0,π]上的单调递增.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 21:07:28
已知,函数f(x)=2sin(2x+π/6)+1求它在[0,π]上的单调递增.
f(x)=2sin(2x+π/6)+1
记t=2x+π/6,t∈[π/6,2π+π/6]
f(t)=2sin(t)+1
f(t)的单调递增区间为:
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
此时:
x∈[0,π/6]或x∈[2π/3,π]
我就想知道明明是t∈[π/6,2π+π/6]是咋个变成
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]的
已知,函数f(x)=2sin(2x+π/6)+1求它在[0,π]上的单调递增.
只帮你理解答案,不从解题的角度,你先不要管X,只考虑t,f(t)=2sin(t)+1的单调递增区间为t∈[π/6,π/2]或t∈[3π/2,2π+π/6],这个好理解吧?然后在考虑t=2x+π/6,t∈[π/6,π/2]或t∈[3π/2,2π+π/6]时,x∈[?]就行了
再问: 额。我就是不懂f(t)=2sin(t)+1的单调递增区间为t∈[π/6,π/2]或t∈[3π/2,2π+π/6]是咋个从 t∈[π/6,2π+π/6]求出来的。。后面我都知道- -。。 呵呵我有点笨,求大神帮帮忙
再答: 结合sin(t)函数图形,他的递增区间为t∈[-π/2+2kπ,π/2+2kπ],当K=0时,t∈[-π/2,π/2],但是由于x取值的限制t∈[π/6,2π+π/6],也就是说t最小值是π/6,最大值是2π+π/6,t要从这个区间取值,所以单调递增区间为t∈[π/6,π/2]或t∈[3π/2,2π+π/6],就是t∈[π/6,π/2]是递增的,然后t∈[π/2,3π/2]递减,到t∈[3π/2,2π+π/6]又是递增的了