设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 08:04:02
设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)c
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)c
(1)由题意,Sn+1=4an+2,Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4(an+1-an)
即an+2=4an+1-4an.
∴an+2-2an+1=2(an+1-2an)
∵bn=an+1-2an
∴bn+1=2bn(n∈N*),
q=
bn+1
bn=2,
又由题设,得1+a2=4+2=6,即a2=5
b1=a2-2a1=3,
∴数列{bn}是首项为3,公比为2的等比数列,其通项公式为bn=3•2n-1.
(2)由题设,可得cn+1-cn=
an+1
2n+1−
an
2n=
an+1−2an
2n+1=
bn
2n+1=
3•2n−1
2n+1=
3
4
数列{cn}是公差为
3
4的等差数列.
又 c1=
a1
2=
1
2
∴cn=
3
4n−
1
4
(3)∵cn=
3
4n−
1
4,∴an=
3
4n×2n−
1
4×2n,
an-1=2n−1(
3
4n−1)∴Sn=a1+a2+…+an=4×2n−1(
3
4n−1)+2=(3n-4)2n-1+2.
即an+2=4an+1-4an.
∴an+2-2an+1=2(an+1-2an)
∵bn=an+1-2an
∴bn+1=2bn(n∈N*),
q=
bn+1
bn=2,
又由题设,得1+a2=4+2=6,即a2=5
b1=a2-2a1=3,
∴数列{bn}是首项为3,公比为2的等比数列,其通项公式为bn=3•2n-1.
(2)由题设,可得cn+1-cn=
an+1
2n+1−
an
2n=
an+1−2an
2n+1=
bn
2n+1=
3•2n−1
2n+1=
3
4
数列{cn}是公差为
3
4的等差数列.
又 c1=
a1
2=
1
2
∴cn=
3
4n−
1
4
(3)∵cn=
3
4n−
1
4,∴an=
3
4n×2n−
1
4×2n,
an-1=2n−1(
3
4n−1)∴Sn=a1+a2+…+an=4×2n−1(
3
4n−1)+2=(3n-4)2n-1+2.
设数列an的前n项和为sn,且a1为1 ,Sn+1=4an+2(n∈N正)
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*).
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*)
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).
设数列{an}的前n项和Sn,且a1=1,Sn=4an+2(n∈N*)
数列an的前n项和为Sn,a1=1/4且Sn=Sn-1+an-1+1/2(n-1为下标)
设数列{an}的前n项和为Sn,若a1=1,Sn=2an+Sn+(n∈N+),则a6=
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)
设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2
设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,