A、B都是n阶方阵,且AB=0,那么B的每个列向量都可以看做是AX=0的一个解向量,为什么r(B)
设A,B都是n阶矩阵,B不等于0向量,且B的每一列都是方程组AX=0的解,则detA=?
向量组证明问题设A,B分别为m*r,r*n阶矩阵,且AB=0,求证(1)B的各列向量是齐次线性方程组AX=0的解(2)若
设A为n阶矩阵,那么对任何n维列向量b,方程Ax=b都有解的充要条件为什么答案是R(A)=n,而不是R(A)=R(A,b
矩阵等价与向量组等价A,B是n阶方阵,P,Q是n阶可逆矩阵. 若B=PAQ,那么A的行(列)向量组和B的行(列)向量组等
A为n阶方阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆.
设A,B为3阶方阵,B的列向量都是线性方程组Ax=β的解向量,其中β=(1,2,3)T.则矩阵(AB)*的秩
A,B都是n阶非零矩阵,AB=0,则A,B的秩都小于n,即B的每一列都是方程组Ax=0的解,为什么r(A)>=1,r(B
设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为
矩阵方程AB=0 A是mXn的矩阵 B是nXs的矩阵 那么 r(A)+r(B)小于等于n 而要是从解向量来看 B是AX=
a b c 均为n阶矩阵 ab=c 且b可逆,为什么有c的列向量组与a的列向量组等价
设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
一道线性代数的题目设a,b是n维列向量,a' =0,n阶方阵A=E+ab',n>=3,则在A的n个特征值中,必然____