定义在正整数集上的的函数y=f(x)对任意a,b∈N,都有f(a+b)=f(a)*f(b)恒成立
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 15:33:01
定义在正整数集上的的函数y=f(x)对任意a,b∈N,都有f(a+b)=f(a)*f(b)恒成立
已知f(1)=a≠0,若an=f(n)(n∈N+)
(1)求证:数列{an}是等比数列,并求出数列{an}的通项公式
(2)若Sn=a1+a2+……+an,数列{Sn-2an}是等比数列,求实数a的值
已知f(1)=a≠0,若an=f(n)(n∈N+)
(1)求证:数列{an}是等比数列,并求出数列{an}的通项公式
(2)若Sn=a1+a2+……+an,数列{Sn-2an}是等比数列,求实数a的值
1:an+1=f(n+1)=f(n)*f(1)=af(n) 因为 a不等于0 且 a1=a 不等于 0
an+1/an= a所以 an是等比数列
an=a1*a^(n-1)=a^n
2:Sn-2an
1:a=1时 Sn=na1=na
Sn-2an=na-2a=(n-2)a=n-2
a2=0 所以不是等比数列 所以 a不等于1
2:Sn=a(1-a^n)/(1-a)
Sn-2an= a(1-a^n)/(1-a)- 2a^n=(a-a^(n+1)-2a^n+2a^(n+1))/(1-a)
=(a-2a^n+a^(n+1))/(1-a) =(a-a^n(2-a))/(1-a)
设{Sn-2an}公比为 k 为定值
Sn+1-2an+1/(Sn-2an) = (a-2a^(n+1)+a^(n+2))/(a-2a^n+a^(n+1)) = k
a-2a^(n+1)+a^(n+2) = ka -2a^n k +a^(n+1) k
a-ka=a^(n+1)[2-a-2k/a+k]
1-k=a^(n)[2-a-2k/a +k]
与n无关的恒成立的式子 所以 两边为0
1-k=0
2-a-2k/a +k=0-->k=0 a=2
an+1/an= a所以 an是等比数列
an=a1*a^(n-1)=a^n
2:Sn-2an
1:a=1时 Sn=na1=na
Sn-2an=na-2a=(n-2)a=n-2
a2=0 所以不是等比数列 所以 a不等于1
2:Sn=a(1-a^n)/(1-a)
Sn-2an= a(1-a^n)/(1-a)- 2a^n=(a-a^(n+1)-2a^n+2a^(n+1))/(1-a)
=(a-2a^n+a^(n+1))/(1-a) =(a-a^n(2-a))/(1-a)
设{Sn-2an}公比为 k 为定值
Sn+1-2an+1/(Sn-2an) = (a-2a^(n+1)+a^(n+2))/(a-2a^n+a^(n+1)) = k
a-2a^(n+1)+a^(n+2) = ka -2a^n k +a^(n+1) k
a-ka=a^(n+1)[2-a-2k/a+k]
1-k=a^(n)[2-a-2k/a +k]
与n无关的恒成立的式子 所以 两边为0
1-k=0
2-a-2k/a +k=0-->k=0 a=2
定义在正整数集上的函数f(x),对于任意a,b∈N*,f(a+b)=f(a)+f(b)恒成立,
设函数y=f(x)是定义在R上的奇函数,且对任意的实数a,b,当a+b≠0时,都有f(a)+f(b) /a+b<0成立.
定义在R上的函数y=f(x),f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b都有f(a+b)=f(a)*f
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1且对任意的a,b∈R有f(a+b)=f(a)*f(b
定义在R上的函数y=f(x),f(0)≠0,当x<0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)×f
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)f(
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意a、b∈R,有f(a+b)=f(a)·f(
定义在R上的非零函数f(x)对任意实数a,b均有f(a+b)=f(a)*f(b),且当x1
定义在R上的函数f(X),对任意实数a,b,都有f(a+b)=f(a)+f(b) 1.求证f(x)是奇函数
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立 (1)求f(0)与f(1)的值
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立 求f(0)与f(1)的值
设f(x)是定义在实数R上的函数.满足f(0)=1且对任意实数ab都有f(a)-f(a-b)=b(2a-b+1),则f(