作业帮 > 数学 > 作业

数列{An}满足a1=2,an+1=2an+3,求数列{nAn}的前n项和Sn

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:52:07
数列{An}满足a1=2,an+1=2an+3,求数列{nAn}的前n项和Sn
数列{An}满足a1=2,an+1=2an+3,求数列{nAn}的前n项和Sn
∵an+1=2an+3,∴左右两边同时加3得
a(n+1)+3=2an+6
a(n+1)+3=2(an+3)
∴{a(n+1)+3}/an+3=2
因为a1+3=5
∴{an+3}是以首项是5,公比是2的等比数列
an+3的通项是5×2^(n-1)
所以an=5×2^(n-1) -3
设数列bn=nAn
所以{bn}通项n×{5×2^(n-1)} -3n
Sn=b1+b2+b3…bn
Sn={1×(5×2^0)-3×1}+{2×(5×2^1)-3×2}+{3×(5×2^2)-3×3}+……n×{5×2^(n-1)} -3n
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-3(1+2+3+…+n)
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-{3(1+n)n}/2 ①
错位相加法:
2Sn=5(2×1×2^0+2×2×2^1+2×3×2^2+…2×n×2^(n-1))-{3(1+n)n}
2Sn=5(1×2^1+2×2^2+3×2^3+…n×2^n)-(3n+3n²)②
①-②:
-Sn=5(1×2^0-1×2^1+2×2^1-2×2^2+3×2^2+…+3×2^n-n×2^n)+(3n+3n²)/2
-Sn=5(1+3×2^1+3×2^2+3×2^3+…+3×2^n - n×2^n)+(3n+3n²)/2
Sn=-5{1+3(2^1+2^2+2^3+…+2^n)- n×2^n}-(3n+3n²)/2
Sn=-5{1+3[-2×(1-2^n)]- n×2^n}-(3n+3n²)/2
Sn=25-(30+n)2^n -(3n+3n²)/2
太复杂了不知最后算对没?思路是这样的