数列{An}满足a1=2,an+1=2an+3,求数列{nAn}的前n项和Sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:52:07
数列{An}满足a1=2,an+1=2an+3,求数列{nAn}的前n项和Sn
∵an+1=2an+3,∴左右两边同时加3得
a(n+1)+3=2an+6
a(n+1)+3=2(an+3)
∴{a(n+1)+3}/an+3=2
因为a1+3=5
∴{an+3}是以首项是5,公比是2的等比数列
an+3的通项是5×2^(n-1)
所以an=5×2^(n-1) -3
设数列bn=nAn
所以{bn}通项n×{5×2^(n-1)} -3n
Sn=b1+b2+b3…bn
Sn={1×(5×2^0)-3×1}+{2×(5×2^1)-3×2}+{3×(5×2^2)-3×3}+……n×{5×2^(n-1)} -3n
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-3(1+2+3+…+n)
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-{3(1+n)n}/2 ①
错位相加法:
2Sn=5(2×1×2^0+2×2×2^1+2×3×2^2+…2×n×2^(n-1))-{3(1+n)n}
2Sn=5(1×2^1+2×2^2+3×2^3+…n×2^n)-(3n+3n²)②
①-②:
-Sn=5(1×2^0-1×2^1+2×2^1-2×2^2+3×2^2+…+3×2^n-n×2^n)+(3n+3n²)/2
-Sn=5(1+3×2^1+3×2^2+3×2^3+…+3×2^n - n×2^n)+(3n+3n²)/2
Sn=-5{1+3(2^1+2^2+2^3+…+2^n)- n×2^n}-(3n+3n²)/2
Sn=-5{1+3[-2×(1-2^n)]- n×2^n}-(3n+3n²)/2
Sn=25-(30+n)2^n -(3n+3n²)/2
太复杂了不知最后算对没?思路是这样的
a(n+1)+3=2an+6
a(n+1)+3=2(an+3)
∴{a(n+1)+3}/an+3=2
因为a1+3=5
∴{an+3}是以首项是5,公比是2的等比数列
an+3的通项是5×2^(n-1)
所以an=5×2^(n-1) -3
设数列bn=nAn
所以{bn}通项n×{5×2^(n-1)} -3n
Sn=b1+b2+b3…bn
Sn={1×(5×2^0)-3×1}+{2×(5×2^1)-3×2}+{3×(5×2^2)-3×3}+……n×{5×2^(n-1)} -3n
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-3(1+2+3+…+n)
Sn=5(1×2^0+2×2^1+3×2^2+…n×2^(n-1))-{3(1+n)n}/2 ①
错位相加法:
2Sn=5(2×1×2^0+2×2×2^1+2×3×2^2+…2×n×2^(n-1))-{3(1+n)n}
2Sn=5(1×2^1+2×2^2+3×2^3+…n×2^n)-(3n+3n²)②
①-②:
-Sn=5(1×2^0-1×2^1+2×2^1-2×2^2+3×2^2+…+3×2^n-n×2^n)+(3n+3n²)/2
-Sn=5(1+3×2^1+3×2^2+3×2^3+…+3×2^n - n×2^n)+(3n+3n²)/2
Sn=-5{1+3(2^1+2^2+2^3+…+2^n)- n×2^n}-(3n+3n²)/2
Sn=-5{1+3[-2×(1-2^n)]- n×2^n}-(3n+3n²)/2
Sn=25-(30+n)2^n -(3n+3n²)/2
太复杂了不知最后算对没?思路是这样的
已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
数列 an的前n项和为Sn,a1=1,an+1=2Sn 求数列{nan}的前n项和Tn
已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式
设数列an满足a1+2a2+3a3+.+nan=2^n 1求数列a的通项 2设bn=n^2an 求数列的前n项和Sn求大
数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式
数列an的前n项和Sn,a1=1,a(n+1)(下标)=2Sn.求通项an 求nan的前n项和Tn
已知数列{an}前n项和为Sn,a1=1,an+1=2Sn,求{nan}的前n项和Tn.
已知数列﹛an﹜的前n项和为Sn,a1=1,an+1=2Sn (1)求数列an的通项公式 (2)求数列nan的的前n项和
已知数列{an}满足a1=1,a(n+1)=3an+2,求数列{an}的前n项和Sn.
已知数列an满足a1+2a2+3a3+……+nan=n(n+1)(n+2),则它的前n项和Sn=?
数列{An}满足A1=1,An+1=An/2An+1 数列Bn的前n项和为Sn=12-12(2/3)n