勾股定理:在Rt△ABC中AB=AC,∠BAC=90°,E、F是BC上的两点,且∠EAF=45°,判断以BE、EF、FC
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:06:10
勾股定理:在Rt△ABC中AB=AC,∠BAC=90°,E、F是BC上的两点,且∠EAF=45°,判断以BE、EF、FC为边的三角形的形
将△AEB逆时针转动直至AB与AC重合,即形成的新△AE'C≌△AEB,
AE'=AE,CE'=BE.
∠E'AC=∠EAB,∠ABE=∠ACE'=∠ACB=45°(直角三角形AB=AC),BE=CE'.
连接E'F.
∠E'AF=∠E'AC+∠FAC=∠EAB+∠FAC=90°-45°=45°
又∠EAF=45°,所以∠EAF=∠E'AF,
又AE'=AE,AF为公用边,△E'AF≌△EAF,E'F=EF,
又∠ABE=∠ACE'=∠ACB=45°,∠ACE'+∠ACB=45°+45°=90°,
△CE'F为RT△,E'F²=CE'²+FC²,
又CE'=BE,E'F=EF,
EF²=BE²+FC²
所以以BE,EF,FC为边的三角形是直角三角形
AE'=AE,CE'=BE.
∠E'AC=∠EAB,∠ABE=∠ACE'=∠ACB=45°(直角三角形AB=AC),BE=CE'.
连接E'F.
∠E'AF=∠E'AC+∠FAC=∠EAB+∠FAC=90°-45°=45°
又∠EAF=45°,所以∠EAF=∠E'AF,
又AE'=AE,AF为公用边,△E'AF≌△EAF,E'F=EF,
又∠ABE=∠ACE'=∠ACB=45°,∠ACE'+∠ACB=45°+45°=90°,
△CE'F为RT△,E'F²=CE'²+FC²,
又CE'=BE,E'F=EF,
EF²=BE²+FC²
所以以BE,EF,FC为边的三角形是直角三角形
如图,已知,在Rt△ABC钟中,∠BAC=90°,AB=AC,E、F是BC上的两点,且∠EAF=45°.求证:BE
已知如图,△ABC是等腰直角三角形,AB=AC,E,F是斜边BC上的两点,且∠EAF=45°.那么以BE,EF,FC三条
如图,在等腰直角三角形ABC中,E、F分别是底边BC上的两点,且∠EAF=45°,求证以BE、EF、FC为边的三角形是直
1.如图,在△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上亮点,若∠EAF=45°,试推断BE、CF、EF
△ ABC,D为BC中点,∠EDF=90°,E在AB上,F在AC上,判断EF,FC,BE三者之间的关系
等腰直角三角形ABC中,∠BAC=90°,点E,F是斜边BC上的两点,且BE=2,CF=3,∠EAF=45°,求EF的长
ABC是等腰直角三角形,AB=AC,E,F是斜边BC上的两点,EAF=45度,试问:以BE,EF,FC三条线段为边正方形
如图,△abc中,d为bc的中点,∠edf=90°,交ab、、ac于e、f两点,求证:be+fc>ef
如图,在Rt△ABC中,∠ABC=90°,D是AB延长线上的一点,E在AB上,连接DE并延长交于AC于F,且EF=FC,
如图,在Rt△ABC中,AB=AC,∠BAC=90°,D是BC的中点.(1)E,F分别为AB,AC上一点,且BE=AF,
如图所示,在RT△ABC中,∠BAC=90°,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A
已知:如图,在△ABC中,∠B=90°,D是边AB的中线,点E,F分别在边BC,AC上,且EF=FC,DF=DA.