设a1=a2=1,an+1=an+an-1,n=2,3…令xn=an+1/an,证明数列xn收敛于1/2(1+√5)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:24:16
设a1=a2=1,an+1=an+an-1,n=2,3…令xn=an+1/an,证明数列xn收敛于1/2(1+√5)
先构造等比数列:
令a+A*a=B*(a+A*a),得到a=(B-A)*a+A*B*a
因此B-A=1且A*B=1
任取一个A=-(√5+1)/2,B=-(√5-1)/2
则a-1/2(√5+1)*a=(-1/2(√5-1))^n (n>=1)
然后再构造一次等比数列:
令a+C*(-1/2(√5-1))^(n+1)=1/2(√5+1)*(a+C*(-1/2(√5-1))^n),解得C=1/√5
a=(1/√5)*[(1/2(√5+1))^n - (-1/2(√5-1))^n] (n>=1)
最后将x=a/a化简:
.
.
此处省略一万步,说多了都是泪.
.
.
x=1/2(√5+1) + √5/{[(√5+1)/(1-√5)]^n-1}
由于丨(√5+1)/(1-√5)丨>1,当n无穷大时,后面一项趋近于0,因此x收敛于1/2(√5+1)
再问: 虽然因为太麻烦,我最后没看对不对,但还是感激一下辛苦打的数学符号。。。
令a+A*a=B*(a+A*a),得到a=(B-A)*a+A*B*a
因此B-A=1且A*B=1
任取一个A=-(√5+1)/2,B=-(√5-1)/2
则a-1/2(√5+1)*a=(-1/2(√5-1))^n (n>=1)
然后再构造一次等比数列:
令a+C*(-1/2(√5-1))^(n+1)=1/2(√5+1)*(a+C*(-1/2(√5-1))^n),解得C=1/√5
a=(1/√5)*[(1/2(√5+1))^n - (-1/2(√5-1))^n] (n>=1)
最后将x=a/a化简:
.
.
此处省略一万步,说多了都是泪.
.
.
x=1/2(√5+1) + √5/{[(√5+1)/(1-√5)]^n-1}
由于丨(√5+1)/(1-√5)丨>1,当n无穷大时,后面一项趋近于0,因此x收敛于1/2(√5+1)
再问: 虽然因为太麻烦,我最后没看对不对,但还是感激一下辛苦打的数学符号。。。
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
已知各项都是正数的等比数列{Xn},满足(Xn)^an=(Xn+1)^an+1=(Xn+2)an+2.证明数列{
在等差数列{an}中,a1=1,a2=3,an+2=3an+1-2an(n属于N+)证明数列{an+1-an}是等比数列
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
一直数列{An}满足A1=1/2,A1+A2+…+An=n^2An
设数列{an},a1=3,an+1=3an-2(n∈N*)
在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an
一道数列题 设A1=1,A2=5/3,An+2=5/3*An+1-2/3*An(n为正整数)(1)令Bn=An+1-An
在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*),则a100等于( an+2=an+1-an
设数列{an}中,a1=2,an+1=an+n+1,则通项an=?
已知数列{An}满足:A1=3 ,An+1=(3An-2)/An,n属于N*.1)证明:数列{(An--1)/(An--
已知数列{an}满足:a1=3,an+1=(3an-2)/an ,n∈N*.(Ⅰ)证明数列{(an-1)/an-2