已知直线L:X+Y-9=0,园M:2X^2+2Y^2-8X-8Y-1=0,点A在直线L上,B,C在园M上,在△ABC中,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 17:23:51
已知直线L:X+Y-9=0,园M:2X^2+2Y^2-8X-8Y-1=0,点A在直线L上,B,C在园M上,在△ABC中,角BAC=45°,AB过圆心M,求A的横坐标的取值范围
圆M方程可改写为
(x-2)^2+(y-2)^2=(√34/2)^2
说明M的圆心为 O(2,2),半径r=√34/2.
A点在直线L上,所以当横坐标x=4,纵坐标=5,
AB通过圆心O(2,2)所以AB的斜率k1=(5-2)/(4-2) =3/2 .(1)
设AC的斜率k2,AB、AC夹角为45°
=> tan45=|(k1-k2)/(1+k1k2)|=1
k2=(-1 ±k1)/(k1 ±1) .(2)
将k1=3/2代入得
k2=(-1+3/2)/(3/2+1)=(1/2)/(5/2)=1/5
或k2=(-1-3/2)/(3/2-1)=(-5/2)/(1/2)=-5
AC有两条直线满足条件,由
可得其方程分别是:
y-5=(1/5)(x-4) => x-5y+21=0
y-5=(-5)(x-4) => 5x+y-15=0
求A点横坐标范围:设A的横坐标为a,则A点坐标为(a,9-a).由于C在圆M上因此AC必须与圆M存在交点.也就是,圆心O至AC的距离必须小于半径,现在由圆心向AC作垂线,垂足为D,在直角三角形AOD中,由于角OAD=45°,所以OD=AO* √2/2=√[(a-2)^2+(9-a-2)^2]*√2/2≤√34/2
=> (a-3)(a-6)≤0
=> 3≤a≤6
(x-2)^2+(y-2)^2=(√34/2)^2
说明M的圆心为 O(2,2),半径r=√34/2.
A点在直线L上,所以当横坐标x=4,纵坐标=5,
AB通过圆心O(2,2)所以AB的斜率k1=(5-2)/(4-2) =3/2 .(1)
设AC的斜率k2,AB、AC夹角为45°
=> tan45=|(k1-k2)/(1+k1k2)|=1
k2=(-1 ±k1)/(k1 ±1) .(2)
将k1=3/2代入得
k2=(-1+3/2)/(3/2+1)=(1/2)/(5/2)=1/5
或k2=(-1-3/2)/(3/2-1)=(-5/2)/(1/2)=-5
AC有两条直线满足条件,由
可得其方程分别是:
y-5=(1/5)(x-4) => x-5y+21=0
y-5=(-5)(x-4) => 5x+y-15=0
求A点横坐标范围:设A的横坐标为a,则A点坐标为(a,9-a).由于C在圆M上因此AC必须与圆M存在交点.也就是,圆心O至AC的距离必须小于半径,现在由圆心向AC作垂线,垂足为D,在直角三角形AOD中,由于角OAD=45°,所以OD=AO* √2/2=√[(a-2)^2+(9-a-2)^2]*√2/2≤√34/2
=> (a-3)(a-6)≤0
=> 3≤a≤6
已知直线l:x+y-6=0和圆M:X^2+y^2-2x-2y-2=0,点A在直线l上,若直线AC与圆M至少有一个公共点c
已知圆M:4x^2+4y^2+8x+16y-5=0直线l:x+y-1=0,三角形ABC的顶点A在直l上,顶点BC都在圆M
已知直线l:x+y-6=0 和圆x^2+y^2-2x-2y-2=0,圆心为M,点A在直线l上,若圆 M与直线AC
题目是这样的:已知圆M:4x^2+4y^2+8x+16y-5=0直线l:x+y-1=0,三角形ABC的顶点A在直l上,顶
如图,在平面直角坐标系中,已知直线m经过点(3,0)且与x轴垂直,点A为其上一动点,直线l:y=1/2x+b(b为常
如图,在平面直角坐标系中,已知直线m经过点(3,0)且与x轴垂直,点A为其上一动点,直线l:y=1/2x+b(b为常数)
已知圆M:2x²+2y²-8x-8y-1=0和直线l:x+y-9=0,过直线l上一点A作△ABC使∠
已知三角形ABC中,A(4,5),B点在X轴上,C点在直线L:2X-Y+2=0上,求三角形ABC周长最小值及A,B坐标
解析几何题已知三角形ABC中,A点的坐标为(4,5),B点在x轴上,C点在直线l:2x-y+2=0上.求三角形ABC的周
已知直线L:y=x+m,m属于R.若以点m(2,0)为圆心的园与直线L相切与点P,且点P在Y轴上,求该园的方程 .
已知圆M:2x^2+2y^2-8x-8y-1=0,直线l:x+y-9=0,过直线l上一点A作三角形ABC,使角BAC=4
已知圆C经过A(0,2),B(2,-2),且圆心C在直线l:x-y+1=0 上,(1)求圆C的方程.(2)若直线m过点(