作业帮 > 数学 > 作业

线性无关的题设α1,α2,...,αn均为维向量.证明:(1).如果n维基本单位向量均可由α1,α2,...,αn线性表

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:45:07
线性无关的题
设α1,α2,...,αn均为维向量.证明:(1).如果n维基本单位向量均可由α1,α2,...,αn线性表示,则α1,α2,...,αn必定线性无关.(2).若任一n维向量均可由α1,α2,...,αn线性表示,则α1,α2,...,αn必定线性无关.
线性无关的题设α1,α2,...,αn均为维向量.证明:(1).如果n维基本单位向量均可由α1,α2,...,αn线性表
第一题,我们知道α1,α2,...,αn线性无关,当且仅当矩阵(α1,α2,...,αn)的行列式不为零,将“n维基本单位向量均可由α1,α2,...,αn线性表示”这句话表示成一个矩阵的形式,两边同时求行列式就可以很快得到结论了.
第二题直接可由第一题推出来.