作业帮 > 数学 > 作业

设A、B为n阶正交矩阵,且|A|不等于|B|.证明:A+B为不可逆矩阵.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 23:17:45
设A、B为n阶正交矩阵,且|A|不等于|B|.证明:A+B为不可逆矩阵.
设A、B为n阶正交矩阵,且|A|不等于|B|.证明:A+B为不可逆矩阵.
由A,B正交,所以有 AA'=A'A=E,BB=B'B=E 所以|A'(A+B)| = |A'A+A'B| = |E+A'B| |B'(A+B)| = |B'A+B'B| = |B'A+E| = |(B'A+E)'| = |A'B+E| 所以|A'(A+B)| = |B'(A+B)| 所以|A'||A+B| = |B'||A+B| 所以|A||A+B| = |B||A+B| 所以|A+B|(|A|-|B|) = 0.由已知|A| ≠|B|,所以 |A|-|B| ≠ 0 所以|A+B| = 0 所以A+B不可逆.