证明没有5*5的矩阵A,使A^2+I=0
设A为n阶矩阵,满足2A^2-3A+5I=0,证明(A-3I)=-1/14(2A+3I) 速
设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.
设n阶矩阵A满足A^2+A-3i=0 证明矩阵A-2I可逆,并求(A-2i )^-1
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?
线性代数:设a为n×1阶矩阵,I为单位矩阵,A=I+aa^T,证明A为对陈矩阵.
线性代数的问题设A是三阶矩阵,且I+A,3I-A,I-3A均不可逆证明:(1)A是可逆矩阵(2)A与对角阵相似
可逆矩阵的证明题若n阶矩阵A满足A^2+aA+bE=0,其中a,b均为常数,试讨论A为可逆矩阵的充分必要条件.答案为b=
若方阵A满足-3A^2+3A-5E=0,证明A与A-2E可逆并且求它们的逆矩阵
设方阵A满足A^k=0,证明:矩阵I-A可逆,并且有(I-A)^-1=I+A+A^2+.+A^k-1
已知A是实反对称矩阵,证明I-A^2为正定矩阵