求正交矩阵Q使Q的T次方 AQ为对角形,
如何求正交矩阵Q,使Q-1AQ为对角矩阵?
求正交矩阵T使T的-1次方AT=T'AT为对角矩阵
线性代数定理求证明…线性代数中:“任一实对称矩阵A一定存在正交矩阵Q,使得:Q^(-1)AQ=Q^(T)AQ=对角矩阵…
一道大学线性代数题对下列实对称矩阵,求一个正交矩阵Q和对角矩阵D,使Q^(-1 )AQ=DA=-2 2 2 2 1 4
一道大学线性代数题对下列实对称矩阵,求一个正交矩阵Q和对角矩阵D,使Q^(-1 )AQ=DA=-2 2 22 1 42
实对称矩阵A,B证明:AB=BA 存在可逆矩阵Q使得Q-1AQ和Q-1BQ同时是对角形
设矩阵 1 -1 -1 A= -1 1 -1 求正交矩阵T 使 (T的-1次方)*AT=T'AT为对角矩阵.-1 -1
线性代数对角阵问题2 2 -2设A = 2 5 -4 求正交阵Q使,Q-1AQ为对角阵-2 -4 -5
证明:任意一个可逆实矩阵A 可以分解为QT ,其中Q为正交矩阵 T为上三角矩阵
线性代数问题对实对称矩阵A,求一正交矩阵P,使P∧-1AP为对角形矩阵.矩阵是3.2.4 2.0.2 4.2.3
已知三阶实对称矩阵A的每行元素之和都等于2,且R(2E+A)=1(1)求正交阵P,使得P-1AP为对角形矩阵?
设A为一个n阶可逆矩阵,证明A可分解成一个正交矩阵Q与一个主对角线元素为正数的上三角矩阵T的乘积.