比如说f(x-6)=f(x),则f(x+6)=f(x),那这是为什么?好象是跟周期函数有关,但是高一课本上并没有对一般的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 20:22:04
比如说f(x-6)=f(x),则f(x+6)=f(x),那这是为什么?好象是跟周期函数有关,但是高一课本上并没有对一般的周期函数详细介绍,
一般周期的定义域、值域是什么?
图象是什么样的?
我上面举的这个例子是不是周期函数?
周期函数我只学过三角函数,这样的函数没怎么见过,但是作业里面又有。
一般周期的定义域、值域是什么?
图象是什么样的?
我上面举的这个例子是不是周期函数?
周期函数我只学过三角函数,这样的函数没怎么见过,但是作业里面又有。
周期函数只是说在一定周期内图像是一样的,定义域是双方无界的集合.
通俗定义
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
严格定义
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质;
(1)对 有(X±T) ;
(2)对 有f(X+T)=f(X)
则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期.如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期.
由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期.
周期函数性质
(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期.
(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期.
(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期.
(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍.
(5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集)
(6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期.
(7)周期函数f(X)的定义域M必定是双方无界的集合.
通俗定义
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
严格定义
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质;
(1)对 有(X±T) ;
(2)对 有f(X+T)=f(X)
则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期.如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期.
由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期.
周期函数性质
(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期.
(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期.
(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期.
(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍.
(5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集)
(6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期.
(7)周期函数f(X)的定义域M必定是双方无界的集合.
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)求证;f(x)是周期函数
已知函数f(x)的定义域为R对任何实数x满足f(x+5)=f(x)则f(x)是周期函数,周期T=
证明:若函数f(x)对定义域中任意x满足f(x+a)=-1/f(x),则f(x)是周期为2a的周期函数.
函数f(x)满足f(x+2)=-f(x),证明f(x)是周期函数
已知f(x)是定义在R上的函数且f(x+2)=1+f(x)/1-f(x) 求证:f(x)是周期函数
已知f(X)是定义域在R上的函数,且f(x+2)=(1+f(x))/(1-f(x)).求证:f(x)是周期函数.
已知定义在r上的偶函数f(x)满足f(x+2)f(x)=1.且f(x)>0.求证:f(x)是周期函数
函数f(x)是定义在R上的奇函数,f(x+2)=-f(x) ,证明是周期函数
若定义在R上的函数f(x)满足f(x+1)=-f(x),则y=f(x) 是周期函数发,如何证明?
高中数学-周期函数:请证明一下‘若f(x)满足 f(x+T) = 1/f(x),则f(x)是周期为2T的周期函数 ’ .
若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.为什么?什么情况不为周期函数?
设f(x)是定义在R上的函数,且f(x+2)=f(-x)(x属于R),证明f(x)是周期函数.