如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 18:03:20
如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,(1)求该抛物线的解析式.
如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,
(1)求该抛物线的解析式.
(2)求证:△OAB是等腰直角三角形.
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由.
如图,抛物线y=ax2+bx经过点A(-4,0)、B(-2,2),连接OB、AB,
(1)求该抛物线的解析式.
(2)求证:△OAB是等腰直角三角形.
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上.
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由.
将点A(-4,0)、B(-2,2)坐标代入抛物线的解析式得:a(-4)^2-4b=0,a(-2)^2-2b=-2,解得a=-1/2,b=-2,所以该抛物线的解析式为y=-1/2x^2-2x.(2)过B作BD垂直x轴于D,在直角三角形OBD中,OB=根号下(OD^2+BD^2)=根号8,同样可求得AB=根号8,所以AB=OB,所以△OAB是等腰直角三角形(3)将△OAB绕点O按逆时针方向旋转135°后,B′(0,-根号8),A′(根号8,-根号8)(由第二问可求得三角形AOB为直角三角形,且角ABO为直角)所以p(根号2,-根号8)由于P点坐标代入抛物线方程不适合,所以点P不在抛物线上;(4)存在,过点A作OB的平行线交抛物线于M,此时四边形ABOM成直角梯形,
设直线OB解析式为y=kx,将B点坐标代入求得k=-1,AM平行于OB所以可设AM解析式为y=-x+b,将A点坐标代入得,b=-4,联立AM解析式和抛物线解析式得方程组的解为x=1,时y=-5;x=-4时y=0,(不合题意舍去)所以M(1,-5)此时AM=根号下[(1-(-4))^2+(-5-0)^2]=根号50=5倍根号2,所以梯形面积=1/2*(OB+AM)*AB=1/2*(根号8+5倍根号2)*根号8=1/2*7倍根号2*2倍根号2=7
设直线OB解析式为y=kx,将B点坐标代入求得k=-1,AM平行于OB所以可设AM解析式为y=-x+b,将A点坐标代入得,b=-4,联立AM解析式和抛物线解析式得方程组的解为x=1,时y=-5;x=-4时y=0,(不合题意舍去)所以M(1,-5)此时AM=根号下[(1-(-4))^2+(-5-0)^2]=根号50=5倍根号2,所以梯形面积=1/2*(OB+AM)*AB=1/2*(根号8+5倍根号2)*根号8=1/2*7倍根号2*2倍根号2=7
如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式
如图①,已知抛物线y=ax^2+bx(a≠0)经过A(3,0)B(4,4)两点 (1)求抛物线的解析式 (2)将直线OB
如图,抛物线y=-x^2+bx+c过点A(4,0)B(1,3)(1)求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标
已知抛物线y=-x2+bx+c经过点A(0,4),且抛物线的对称轴为直线x=2 求该抛物线的解析式
(1)已知抛物线y=ax2+bx+c经过三点A(-2,0),B(4,0),C(0,4)的解析式
抛物线y=ax2+bx+c(a≠0)的顶点在x轴上,对称轴为直线x=1,并且经过点(2,2),求该抛物线对应的函数解析式
如图,抛物线y=a(x的平方)+bx+c经过点A(4,0),B(2,2),连接0B,AB
如图,已知抛物线y=ax2+bx+c(a不等于0)经过点A(2,0),B(1,0),C(0,3),连接AC,点P是该抛物
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于x轴,交抛物线于点B.
如图1,抛物线y=ax2+bx的对称轴为直线x=-3/2且经过点a(-4,2),ab平行于x轴交抛物线于点b
二次函数Y=ax2平方+bx+c的图像经过A(1,-2) B(0,3) C(-1,0)三点,求出抛物线解析式?