已知集合M={x|f(x)-x=0,x∈R}与集合N={x|f[f(x)]-x=0,x∈R},其中f(x)是一个二次项系
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 21:11:17
已知集合M={x|f(x)-x=0,x∈R}与集合N={x|f[f(x)]-x=0,x∈R},其中f(x)是一个二次项系数系数为1的二次函数.
(1)判断M与N的关系;
(2)若M是单元素集合,求证:M=N.
(1)判断M与N的关系;
(2)若M是单元素集合,求证:M=N.
(1)对于任意的x∈M,则f(x)=x,∴f[f(x)]-x=f(x)-x=0;
即任意的x∈M,都有x∈N,∴M⊆N;
若设0∈N,设f(x)=x2+bx+c,f(0)=c,f[f(0)]=f(c)=c(c+b+1),可以让c+b+1=0,而c≠0;
即f[f(0)]=0,而f(0)≠0,∴0∉M;
∴M⊊N;
(2)证明:设x1∈M,x1∈N,x2∈N,f(x2)=t;
则:f[f(x2)]-x2=0,即f(t)-x2=0,f(t)=x2;
∵M是单元素集合,所以x1是方程:f(x)-x=x2+(b-1)x+c=0的唯一实根;
令g(x)=x2+(b-1)x+c,则该函数值域为[0,+∞),只有x=x1时,g(x)=0;
则由f(x2)=t得,x22+bx2+c=t,∴x22+(b-1)x2+c=t-x2>0,即t>x2;
由f(t)=x2得,t2+bt+c=x2,∴t2+(b-1)t+c=x2-t≥0,即x2≥t;
∴t>x2和x2≥t不可能,即x2∉N,即M,N都只有一个元素x1;
∴M=N.
即任意的x∈M,都有x∈N,∴M⊆N;
若设0∈N,设f(x)=x2+bx+c,f(0)=c,f[f(0)]=f(c)=c(c+b+1),可以让c+b+1=0,而c≠0;
即f[f(0)]=0,而f(0)≠0,∴0∉M;
∴M⊊N;
(2)证明:设x1∈M,x1∈N,x2∈N,f(x2)=t;
则:f[f(x2)]-x2=0,即f(t)-x2=0,f(t)=x2;
∵M是单元素集合,所以x1是方程:f(x)-x=x2+(b-1)x+c=0的唯一实根;
令g(x)=x2+(b-1)x+c,则该函数值域为[0,+∞),只有x=x1时,g(x)=0;
则由f(x2)=t得,x22+bx2+c=t,∴x22+(b-1)x2+c=t-x2>0,即t>x2;
由f(t)=x2得,t2+bt+c=x2,∴t2+(b-1)t+c=x2-t≥0,即x2≥t;
∴t>x2和x2≥t不可能,即x2∉N,即M,N都只有一个元素x1;
∴M=N.
设f(x)是定义在R上的函数集合M={x|f(x)=x},N={x|f(f(x))=x}
已知全集I=R,若函数f(x)=x²-3x+2,集合M={x|f(x)≤0},N={x|f′(x)<0},则M
已知函数 f(x)= x²+ax+b,集合A={f(x)=x} 集合B={f[f(x)]}=x,x∈R},当A
已知二次函数f(x)满足f(x+1)-f(x)=2x+1 (x∈R),且f(0)=1,判断f(x)的奇偶性
已知函数f(x)=X²-4x+3,集合M={(x.y)\f(x)+f(y)≤0},集合N={(x,y)\f(x
已知f:A →B是从集合A到集合B的一个映射,其中A=B=【(x,y)|x,y∈R】,若f:(x,y)→(x+y,xy)
设全集U=R,集合M={x|f(x)=0},N={x|g(x)=0}
g(x)=f(-x)+f(x),x∈R
1、已知f(x)是R上的奇函数,当x∈(0,+∞)时,f(x)=x(1+3^√x).求f(x)
已知函数f(x)满足2f(x)+f(1/x)=2x,且x∈R,≠0,则f(x)=
已知函数f(x)=ax²+bx+1(a,b为实数),x∈R,F(x)={f(x) (x>0) ;-f(x) (
设f(x)是二次函数,且对于任意x∈R,有f²(x)+1=f[f(x)],求f(x)的表达式.