已知数列{an}满足a1=0,a2=2,且对任意m'n属于N*,都有a(2m-1)+a(2n+1)=2a(m+n-1)+
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:19:15
已知数列{an}满足a1=0,a2=2,且对任意m'n属于N*,都有a(2m-1)+a(2n+1)=2a(m+n-1)+2(m-n)^2
设cn=(a(n+1)-an)q^(n-1),求数列{cn}的前n项和Sn
设cn=(a(n+1)-an)q^(n-1),求数列{cn}的前n项和Sn
a(2n-1)+a(2n+1)=2a(n+n-1)+0=2a(2n-1),
a(2n+1)=a(2n-1)=...=a(1)=0.
a(2n-1)=0.
a[2(n+1)-1] + a(2n+1) = 2a(n+1 + n-1) + 2(n+1-n)^2,
a(2n+1) + a(2n+1) = 0 = 2a(2n) + 2,
a(2n)=-1, 与a(2)=2矛盾哈.
题目有问题吧...
再问: 题目就是这样的!!!我也不会做
再答: 若不顾问题的话,解法如下: m=n+1, a[2(n+1)-1] + a(2n+1)=2a(n+1+n-1)+2(n+1-n)^2, 2a(2n+1)=2a(2n) + 2, a(2n+1)=a(2n)+1, c(2n)=[a(2n+1)-a(2n)]q^(2n-1) = q^(2n-1), m=n, a(2n-1)+a(2n+1)=2a(n+n-1)+0=2a(2n-1), a(2n+1)=a(2n-1) a(2n-1)=a(2n+1)=a(2n)+1, c(2n-1)=[a(2n)-a(2n-1)]q^(2n-2)=-q^(2n-2). c(2n-1)+c(2n)=q^(2n-1)-q^(2n-2)=(q-1)q^(2n-2)=(q-1)(q^2)^(n-1) 若q^2=1, s(2n)=[c(1)+c(2)]+...+[c(2n-1)+c(2n)]=[q-1] + [q-1]q^2 + ... + (q-1)(q^2)^(n-1) =(q-1)n s(2n-1)=s(2n)-c(2n)=(q-1)n-q^(2n-1). 若q^2不等于1, s(2n)=[c(1)+c(2)]+...+[c(2n-1)+c(2n)]=[q-1] + [q-1]q^2 + ... + (q-1)(q^2)^(n-1) =(q-1)[(q^2)^n-1]/(q^2-1)=[q^(2n)-1]/(q+1) s(2n-1)=s(2n)-c(2n)=[q^(2n)-1]/(q+1)-q^(2n-1).
a(2n+1)=a(2n-1)=...=a(1)=0.
a(2n-1)=0.
a[2(n+1)-1] + a(2n+1) = 2a(n+1 + n-1) + 2(n+1-n)^2,
a(2n+1) + a(2n+1) = 0 = 2a(2n) + 2,
a(2n)=-1, 与a(2)=2矛盾哈.
题目有问题吧...
再问: 题目就是这样的!!!我也不会做
再答: 若不顾问题的话,解法如下: m=n+1, a[2(n+1)-1] + a(2n+1)=2a(n+1+n-1)+2(n+1-n)^2, 2a(2n+1)=2a(2n) + 2, a(2n+1)=a(2n)+1, c(2n)=[a(2n+1)-a(2n)]q^(2n-1) = q^(2n-1), m=n, a(2n-1)+a(2n+1)=2a(n+n-1)+0=2a(2n-1), a(2n+1)=a(2n-1) a(2n-1)=a(2n+1)=a(2n)+1, c(2n-1)=[a(2n)-a(2n-1)]q^(2n-2)=-q^(2n-2). c(2n-1)+c(2n)=q^(2n-1)-q^(2n-2)=(q-1)q^(2n-2)=(q-1)(q^2)^(n-1) 若q^2=1, s(2n)=[c(1)+c(2)]+...+[c(2n-1)+c(2n)]=[q-1] + [q-1]q^2 + ... + (q-1)(q^2)^(n-1) =(q-1)n s(2n-1)=s(2n)-c(2n)=(q-1)n-q^(2n-1). 若q^2不等于1, s(2n)=[c(1)+c(2)]+...+[c(2n-1)+c(2n)]=[q-1] + [q-1]q^2 + ... + (q-1)(q^2)^(n-1) =(q-1)[(q^2)^n-1]/(q^2-1)=[q^(2n)-1]/(q+1) s(2n-1)=s(2n)-c(2n)=[q^(2n)-1]/(q+1)-q^(2n-1).
已知数列{an}中,a1=0,a2=2,且对任意的m,n∈N*都有a(2m-1)+a(2n-1)=2a(m+n-1)+2
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a(2m-1)+a(2n-1)=2a(m+n-1)+2(
已知数列{an}满足a1=0,a2=2,且对任意m,n∈N*都有a(2m-1)+a(2n-1)=2a(m+n-1)+2(
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列{an}满足a1=1 ,a3=3,且对任意m,n∈N﹢都有am-1+a2n-1=2am+n-1求a2,a4.
在数列{an}中,a1=2010,且对任意正整数,都有a(n+2)=a(n+1)-an,则a2+a3+a4+……+a20
已知数列{an}满足a0=1,an=a0+a1+a2+...+a(n-1) (n≥2且n属于N*),则当n属于N*时an
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
在数列{an}中已知a1=0,a2=6,且对于任意正整数n都有a(n+2)=5a(n+1)-6a(n)
已知数列{an}中,a1=2.a2=10 dm对任意n属于N*有a(n+2)=2a(n+1)+3an成立.(1)若{a(
在数列{an}中,已知对任意正整数n,有a1+a2+...+an=2的n次方-1,那么a1的平方+a2的平方+...+a