作业帮 > 数学 > 作业

函数y=cos(wx+φ)和y=tan(wx+φ)图像的性质?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 09:03:05
函数y=cos(wx+φ)和y=tan(wx+φ)图像的性质?
定义域、值域、对称轴等等.
函数y=cos(wx+φ)和y=tan(wx+φ)图像的性质?
y=cos(ωx+φ),参考y=cosx的图像.
定义域x∈R,值域y∈[-1,1]
当y为最大值或者最小值时,ωx+φ=π/2 +kπ (k=0,±1,±2,±3……)
那么x=(π/2 +kπ -φ)/ω
即对称轴为 x=(π/2 +kπ -φ)/ω (对于余弦函数,在对称轴处取得最大值或者最小值)
y=tan(ωx+φ),参考y=tanx的图像
定义域ωx+φ≠π/2 +kπ (k=0,±1,±2,±3……)
即x≠(π/2 +kπ -φ)/ω (k=0,±1,±2,±3……)
值域y∈R
它没有对称轴,它只关于点中心对称,
当y=0时,那么 ωx+φ=kπ (k=0,±1,±2,±3……)
即:x=(kπ -φ)/ω
那么y=tan(wx+φ)关于点((kπ -φ)/ω,0)中心对称 (对于正切函数,它在中心对称点的值为0)