作业帮 > 数学 > 作业

若x1,x2,x3...xn的方差为2,则3x1,3x2,3x3...3xn的方差是多少?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 22:32:55
若x1,x2,x3...xn的方差为2,则3x1,3x2,3x3...3xn的方差是多少?
若x1,x2,x3...xn的方差为2,则3x1,3x2,3x3...3xn的方差是多少?
设X1,X2……Xn的平均数为a,则X1+X2+……+Xn=an
所以3X1,3X2……3Xn的平均数为:
【3X1+3X2+……+3Xn)】/n
=【3(X1+x2+.+xn)】/n
=【3an】/n=3a
所以3X1,3X2……3Xn的方差为
s² =1/n*{【3x1-3a)】² +【3x2-3a】² +..+【3xn-3a】² }
=1/n*{【3(x1-a)】²+【3(x2-a)】²+..+【3(xn-a)】²}
=1/n*{9(x1-a)²+9(x2-a)²+..+9(xn-a)²}
=9*1/n*{(x1-a)²+(x2-a)²+..+(xn-a)²}
=9*2=18
说明:X1,X2……Xn的方差为2,平均数为a ,则1/n*{(x1-a)²+(x2-a)²+..+(xn-a)²}=2