设数列{an}前n项和为sn=an2+bn+c 给出下列命题:
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:52:31
设数列{an}前n项和为sn=an2+bn+c 给出下列命题:
①数列{an}的通项公式为an=2an+b-a;
②数列{an}是等差数列;
③当c=0时,数列{an}是等差数列,其中正确的命题个数为( )
A. 0
B. 1
C. 2
D. 3
①数列{an}的通项公式为an=2an+b-a;
②数列{an}是等差数列;
③当c=0时,数列{an}是等差数列,其中正确的命题个数为( )
A. 0
B. 1
C. 2
D. 3
∵sn=an2+bn+c,
∴当n>1时,sn-1=a(n-1)2+b(n-1)+c
两式相减得,an=2na+b-a,
当n=1时,a1=s1=a+b+c,
则数列{an}的通项公式为an=2an+b-a显然不正确,
当c≠0时,数列{an}不为等差数列;
当c=0时,数列的通项公式为:
an=Sn-Sn-1=(an2+bn+c)-[a(n-1)2+b(n-1)+c]=2an+b-a,
又因为a2-a1=(4a-a)-(2a-a)=2a,
所以数列{an}是公差为2a的等差数列,
因此正确的命题有1个:③.
故选:B.
∴当n>1时,sn-1=a(n-1)2+b(n-1)+c
两式相减得,an=2na+b-a,
当n=1时,a1=s1=a+b+c,
则数列{an}的通项公式为an=2an+b-a显然不正确,
当c≠0时,数列{an}不为等差数列;
当c=0时,数列的通项公式为:
an=Sn-Sn-1=(an2+bn+c)-[a(n-1)2+b(n-1)+c]=2an+b-a,
又因为a2-a1=(4a-a)-(2a-a)=2a,
所以数列{an}是公差为2a的等差数列,
因此正确的命题有1个:③.
故选:B.
数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为
【高中数学】数列{an}的前N项和为Sn,求证:Sn=an2+bn(a,b∈R)是数列{an}为等差
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.设数列{bn}的前n项
数列{an}的前n项和sn=an2 +bn(a,b为常数),试证明{an}是等差数列,并求a1和d.
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)
设数列bn的前n项和为Sn.且bn=2-2Sn.数列an为等差数列,a5=14.a7=20.求数列bn通项公式.2,若c
已知数列an的前n项和Sn=n^2,设bn=an/3^n,记数列bn的前n项和为Tn.
已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn
已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn
数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn
数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的