求x^2y'+2xy=sinx的通解
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 20:08:45
求x^2y'+2xy=sinx的通解
求x²y'+2xy=sinx的通解先求齐次方程x²y'+2xy=0的通
分离变量得dy/y=-(2/x)dx;
积分之,得lny=-2lnx+lnC₁=ln(C₁x⁻²)故得y=C₁x⁻²;
将C₁换成x的函数u,得y=ux⁻².(1)
将(1)的两边对x取导数得y'=(du/dx)x⁻²-2ux⁻³.(2)
将(1)和(2)代入原式得:x²[(du/dx)x⁻²-2ux⁻³]+2x(ux⁻²)=sinx
化简得 du/dx=sinx,故得du=sinxdx,∴u=-cosx+C;
代入(1)式即得原方程的通解为:y=(C-cosx)/x².
分离变量得dy/y=-(2/x)dx;
积分之,得lny=-2lnx+lnC₁=ln(C₁x⁻²)故得y=C₁x⁻²;
将C₁换成x的函数u,得y=ux⁻².(1)
将(1)的两边对x取导数得y'=(du/dx)x⁻²-2ux⁻³.(2)
将(1)和(2)代入原式得:x²[(du/dx)x⁻²-2ux⁻³]+2x(ux⁻²)=sinx
化简得 du/dx=sinx,故得du=sinxdx,∴u=-cosx+C;
代入(1)式即得原方程的通解为:y=(C-cosx)/x².
求微分方程xy'-2y=5x的通解,
求微分方程的通解.x^2 y"+xy'=1
高数中关于微分方程的通解问题,求xy'-y=x^2的通解,
求dy/dx +xy =x(y^2)的通解 和 y' -y=x的通解
求方程(xy+y+sinx)dx+(x+cosy)dy=0的通解
求y'+2y/x=sinx/x^2微分方程的通解
1.求(xy^2+x)dx+(xy^2-y)dy=0的通解
求(x+xy^2)dx-(x^2y+y)dy=0的通解!~
求微分方程(xy^2-x)dx+(x^2y+y)dy=0的通解
求微分方程的通解x^2y''-4xy'+6y=x
微分方程y''=sinx+e^(2x)的通解为
求微分方程y'=(1+y^2)/xy的通解