如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 04:00:58
如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.
(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;
(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.
(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;
(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.
(1)AF=DE.
∵ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°,
∵AE=BF,
∴△DAE≌△ABF,
∴AF=DE.
(2)四边形HIJK是正方形.
如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
∴HI=KJ=
1
2AF,HK=IJ=
1
2ED,
∵AF=DE,
∴HI=KJ=HK=IJ,
∴四边形HIJK是菱形,
∵△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠BAF+∠AED=90°,
∴∠AOE=90°
∴∠KHI=90°,
∴四边形HIJK是正方形.
∵ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°,
∵AE=BF,
∴△DAE≌△ABF,
∴AF=DE.
(2)四边形HIJK是正方形.
如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
∴HI=KJ=
1
2AF,HK=IJ=
1
2ED,
∵AF=DE,
∴HI=KJ=HK=IJ,
∴四边形HIJK是菱形,
∵△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠BAF+∠AED=90°,
∴∠AOE=90°
∴∠KHI=90°,
∴四边形HIJK是正方形.
如图1,在正方形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且AE=BF=CG=DH
已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH.
如图,在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,并且AE=BF=CG=DH.
如图,在正方形ABCD中,点E、F分别在AB、BC上,且AE=BF,AF与DE相交于点G.从给的条件中,你能求出AF⊥D
如图,在正方形ABCD中,点E、F分别在AB、BC上,且AE=BF,AF与DE相交于点G.从所给的条件中,你能得出哪些结
已知:如图,平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,AD上,且DH=BF,AE=CG.求证:EG
已知:如图,在平行四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=CG,BF=DH
如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是棱AB、BC上的动点,且AE=BF.
如图,在平行四边形ABCD中,BC=2AB,AE=AB=BF,且点E.F在直线AB上,求证:CE垂直DF
正方形ABCD中E,F分别是AB,BC上的点,且AE=BF.求证AF垂直DE
如图正方形ABCD的边长为3,点E,F分别在AB,BC上,AE=BF=1
已知:如图,在梯形ABCD中,AB//CD,点E,F在AB上,且AE=BF,∠AED=∠BFC.求证:AD=BC