如图,已知直角三角形BCD的一条直角边BC与等腰直角三角形ABC的斜边BC重合,若AB=2,∠CBD=30°
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:26:01
如图,已知直角三角形BCD的一条直角边BC与等腰直角三角形ABC的斜边BC重合,若AB=2,∠CBD=30°
向量AD=m向量AB+n向量AC,则m-n=
向量AD=m向量AB+n向量AC,则m-n=
过D作DE⊥AB交AB于E,作DF⊥AC交AC的延长线于F.
∵AE⊥AF、DE⊥AE、DF⊥AF,∴AFDE是矩形,∴向量AD=向量AE+向量AF.
∵AB=2,又BC是等腰直角三角形ABC的斜边,∴∠ACB=45°、AC=AB=2、BC=2√2.
∵BC⊥CD、∠CBD=30,∴CD=BC/√3=2√2/√3=2√6/3.
∵∠DCF=180°-∠ACB-∠BCD=180°-45°-90°=45°,又DF⊥CF,
∴CF=CD/√2=(2√6/3)/√2=2√3/3,DF=CF=2√3/3.
∵AFDE是矩形,∴AE=DF=2√3/3.
由AE=2√3/3、AB=2,得:AE/AB=(2√3/3)/2=√3/3,∴AE=(√3/3)AB,
∴向量AE=(√3/3)向量AB.
由AC=2、CF=2√3/3,得:AF=2+2√3/3,∴AF/AC=(2+2√3/3)/2=1+√3/3,
∴向量AF=(1+√3/3)向量AC.
由向量AD=向量AE+向量AF、向量AE=(√3/3)向量AB、向量AF=(1+√3/3)向量AC,
得:向量AD=(√3/3)向量AB+(1+√3/3)向量AC,
又向量AD=m向量AB+n向量AC,∴m=√3/3、n=1+√3/3,∴m-n=-1.
∵AE⊥AF、DE⊥AE、DF⊥AF,∴AFDE是矩形,∴向量AD=向量AE+向量AF.
∵AB=2,又BC是等腰直角三角形ABC的斜边,∴∠ACB=45°、AC=AB=2、BC=2√2.
∵BC⊥CD、∠CBD=30,∴CD=BC/√3=2√2/√3=2√6/3.
∵∠DCF=180°-∠ACB-∠BCD=180°-45°-90°=45°,又DF⊥CF,
∴CF=CD/√2=(2√6/3)/√2=2√3/3,DF=CF=2√3/3.
∵AFDE是矩形,∴AE=DF=2√3/3.
由AE=2√3/3、AB=2,得:AE/AB=(2√3/3)/2=√3/3,∴AE=(√3/3)AB,
∴向量AE=(√3/3)向量AB.
由AC=2、CF=2√3/3,得:AF=2+2√3/3,∴AF/AC=(2+2√3/3)/2=1+√3/3,
∴向量AF=(1+√3/3)向量AC.
由向量AD=向量AE+向量AF、向量AE=(√3/3)向量AB、向量AF=(1+√3/3)向量AC,
得:向量AD=(√3/3)向量AB+(1+√3/3)向量AC,
又向量AD=m向量AB+n向量AC,∴m=√3/3、n=1+√3/3,∴m-n=-1.
已知RT三角形BCD的一条直角边BC与等腰RT三角形ABC的斜边重合,r若AB=2,∠CBD=30,AD=mAB+nAC
如图,在△ABC中,∠B=30°,AC=√2,等腰直角三角形ACD的斜边AD在AB边上,求BC的长
已知△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点.
如图,在三角形ABC中,AC=BC,∠C=30°,等腰直角三角形BDE的斜边BE在BC上,点D在AC上,若AB=2,求C
如图,在等腰直角三角形ABC中,AB=AC,∠A=90°,D是斜边BC的中点,G是斜边BC上的一个动点,GE⊥AE与E,
如图,已知点E在直角三角形ABC的斜边AB上,以AE为直径的圆O与直角边BC相切于点D,若BE=2,BD=4,求圆O的半
如图,在等腰直角三角形ABC中,已知AD为斜边BC上的中线,点P在BC上,但不与B、C、D相重合.作PE⊥AB,PF⊥A
如图所示,D是等腰直角三角形ABC的直角边BC的中点,E在斜边AB上,且AE:EB=2:1,求证:CE⊥AD
已知如图,△ABC是等腰直角三角形,∠C是直角,(1)若BC=2,求点A运动的路程.
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角△CDE,连接A
如图已知△ABC是直角三角形,∠C=90°,分别以AB、AC、BC为斜边向外做等腰三角形,试探索这三个等腰直角三
已知等腰直角三角形ABC和等腰直角三角形BCD平面互相垂直,且AB=BC=CD=1,求四面体ABCD外接球的表面积.