作业帮 > 数学 > 作业

“当n取任意整数时,n(n+1)(n+2)(n+3)+1总是一个完全平方数”是真命题还是假命题?请说明理由!

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 02:08:31
“当n取任意整数时,n(n+1)(n+2)(n+3)+1总是一个完全平方数”是真命题还是假命题?请说明理由!
“当n取任意整数时,n(n+1)(n+2)(n+3)+1总是一个完全平方数”是真命题还是假命题?请说明理由!
是真命题
证明如下:n(n+1)(n+2)(n+3)+1
=[n(n+3)][(n+1)(n+2)]+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2