f(x1,x2,x3)=x^TAx已知A的特征值为-1,1,2,则该二次型的规范形为
设二次型f(x1,x2,x3,x4)=x'Ax的正惯性指数为p=1,又矩阵A满足A^2-2A=3E,则此二次型的规范形为
已知二次型f(x1,x2,x3)=X^AX的矩阵A的三个特征值为5,-1,3,则二次型通过正交线性替换X=UY化得标准型
设二次型f(x1,x2,x3)=X^TAX,A中各行元素之和为3,求f在正交变换X=QY下的标准型
设x1^2+x2^2+…+xn^2=1.证明二次型f(x1,x2,…,xn)=x^TAx的最大值为矩阵A的最大特征值
设二次型f(x1,x2,x3)=xˇTAx的秩为1.A的各行元素之和为3,则f在正交变换下x=Qy的变准型为?
已知二次型f(x1 x2 x3)=2x1^2+2x2^+2x3^2+2x1x2,求矩阵A的特征值?
关于二次型已知二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2,且Q的第三列为(
已知二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2,且Q的第三列为(√2/2,
线性代数问题,急已知二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2,且Q的第三
设A为3阶矩阵,其特征值分别为-1,2,3,对应的特征向量分别为X1,X2,X3.若P=(X1,X2,X3)
24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为 .
一道线性代数题目设二次型f(x1,x2,x3)=x'Ax 的秩为1,A中行元素之和为3,则f在正交变换下x=Qy的标准型