已知函数f(x)=x²+ax+b(a、b∈R),g(x)=2x²-4x-16
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:46:14
已知函数f(x)=x²+ax+b(a、b∈R),g(x)=2x²-4x-16
(1)若f(x)的绝对值小于等于g(x)的绝对值对于x属于R恒成立,求a、b;
(2)在(1)的条件下,若对一切x大于2,均有f(x)大于等于(m+2)x-m-15成立,求实数m的取值范围
(1)若f(x)的绝对值小于等于g(x)的绝对值对于x属于R恒成立,求a、b;
(2)在(1)的条件下,若对一切x大于2,均有f(x)大于等于(m+2)x-m-15成立,求实数m的取值范围
1.g(x)=2(x-1)²-18,f(x)=(x+a/2)²+b-a²/4;
g(x)为开口向上的二次函数,f(x)也为开口向上的二次函数.
由f(x)的绝对值小于等于g(x)的绝对值对于x属于R恒成立可知:
分为g(x)≥f(x)≥0,g(x)≤f(x)≤0.两段,
当x=4或x=-2时,g(x)=f(x).同时-18<b-a²/42,h(x)=f(x)-(m+2)x+m+15≥0
h(x)=x²-(m+4)x+(m+7)
h(x)=(x-(m+4)/2)²-((m+4)/2)²-(m+7);
x>2,2种情况:x≤(m+4)/2,则-((m+4)/2)²+(m+7)>0
x为2到正无穷,故此情况不存在
x>(m+4)/2,m
g(x)为开口向上的二次函数,f(x)也为开口向上的二次函数.
由f(x)的绝对值小于等于g(x)的绝对值对于x属于R恒成立可知:
分为g(x)≥f(x)≥0,g(x)≤f(x)≤0.两段,
当x=4或x=-2时,g(x)=f(x).同时-18<b-a²/42,h(x)=f(x)-(m+2)x+m+15≥0
h(x)=x²-(m+4)x+(m+7)
h(x)=(x-(m+4)/2)²-((m+4)/2)²-(m+7);
x>2,2种情况:x≤(m+4)/2,则-((m+4)/2)²+(m+7)>0
x为2到正无穷,故此情况不存在
x>(m+4)/2,m
已知函数f(x)=x^2+ax+b(a、b∈R),g(x)=2x^2-4x-16,且|f(x)|≤|g(x)|对x∈R恒
已知函数f(x)=x的平方+ax+b(a,b∈R),g(x)=2倍x的平方-4x-16,且|f(x)|小于等于|g(x)
设函数f(x)=x²+ax+b(a,b∈R),已知不等式|f(x)|≤|2x²+4x-6|对任意的实
已知函数f(x)=x2+ax+b(a,b€R),g(x)=2x2-4x-16,且|f(x)|
已知函数f(x)=ax²+2bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x
已知函数f(x)=2^x,g(x)=-x²+2x+b(b∈R)
已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,
已知函数f(x)=ax²+bx+1(a,b为实数),x∈R,F(x)={f(x) (x>0) ;-f(x) (
设函数F(x)=1/x,g(x)=ax²+bx(a,b∈R,a≠ 0)
已知函数ƒ(x)=x²-ax+㏑x+b(a,b∈R)
已知函数f(x)=ax^3+x^2+bx(其中a、b为常数属于R),g(x)=f(x)+f'(x)是奇函数
已知函数f(x)=ax^3+x^2+bx(其中常数a,b属于R),g(x)=f(x)+f'(x)是奇函数