抛物线的顶点在原点,焦点在x轴正半轴,一内接三角形的直角顶点在坐标原点,一
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:51:44
抛物线的顶点在原点,焦点在x轴正半轴,一内接三角形的直角顶点在坐标原点,一
抛物线的顶点在原点,焦点在x轴正半轴,一内接三角形的直角顶点在坐标原点,一直角边方程为y=2x,斜边长为5倍根号3,求抛物线方程
抛物线的顶点在原点,焦点在x轴正半轴,一内接三角形的直角顶点在坐标原点,一直角边方程为y=2x,斜边长为5倍根号3,求抛物线方程
设抛物线为y²=2px,p>0
∵一条直角边为y=2x,且直角为原点
∴另一条直角边为y=-x/2
联立y²=2px和y=2x,得:4x²=2px,即(2x-p)x=0
∵斜边的端点不是原点,则x=p/2,即斜边的一个端点为(p/2,p)
联立y²=2px和y=-x/2,得:x²/4=2px,即(x-8p)x=0
∵斜边的端点不是原点,则x=8p,即斜边的另一个端点为(8p,-4p)
则斜边长度为:√[(p/2-8p)²+(p+4p)²]=√[225p²/4+25p²]=√[325p²/4]=5p/2·√13=5√3
则p=2√39/13
∴抛物线方程为:y²=4√39/13·x
∵一条直角边为y=2x,且直角为原点
∴另一条直角边为y=-x/2
联立y²=2px和y=2x,得:4x²=2px,即(2x-p)x=0
∵斜边的端点不是原点,则x=p/2,即斜边的一个端点为(p/2,p)
联立y²=2px和y=-x/2,得:x²/4=2px,即(x-8p)x=0
∵斜边的端点不是原点,则x=8p,即斜边的另一个端点为(8p,-4p)
则斜边长度为:√[(p/2-8p)²+(p+4p)²]=√[225p²/4+25p²]=√[325p²/4]=5p/2·√13=5√3
则p=2√39/13
∴抛物线方程为:y²=4√39/13·x
已知抛物线C的顶点在原点,焦点在x轴上,Rt三角形AOB的三个顶点在抛物线C上,直角顶点O为原点,OA所在直线的方程为y
已知抛物线顶点抛物线顶点在坐标原点抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同抛物线上求一
已知顶点在坐标原点,焦点在x轴正半轴上的抛物线有一个内接直角三角形,直角顶点在原点,斜边长是5√3,一条直角边所在直线的
已知抛物线S的顶点在坐标原点,焦点在x轴上,三角形ABC的三个顶点都在抛物线上,且三角形ABC的重心为抛物线的焦点,若B
已知抛物线S的顶点在坐标原点,焦点在x轴上,三角形ABC 的三个顶点都在抛物线上,且 三角形ABC的重心为抛物线的焦点,
已知直线l过原点,抛物线C的顶点在原点,焦点在x 轴正半轴上,
已知顶点在坐标原点,焦点在X轴正半轴的抛物线上有一点A(1/2,m),A点到抛物线焦点的距离为1
已知抛物线的顶点在坐标原点,焦点在y轴上,且过(2,1)
已知一抛物线的顶点在原点,焦点在X轴上,三角形ABC的三个顶点都在抛物线上,又三角形ABC的重心恰是抛物线的焦点,BC所
已知直线L过坐标原点,抛物线C的顶点在坐标原点,焦点在X轴的正半轴上,若点 A(-1,0)和点B(
已知抛物线的顶点在原点,焦点在x轴上,其准线过双曲线x
已知抛物线的顶点在坐标原点,焦点F在X轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足