已知f(x)在x0处连续,且,f(x0)>0,试证存在x0的某邻域,在该邻域内恒有f(x)>f(x0)/2
设f(x)在x0的某邻域内有二阶导数,且f(x0)=0,f'(x0)≠0,f''(x0)=0,则一定有
函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等
f(x)在x0连续,邻域内可导,他的导数在x0是否连续
如果lim(x趋于x0)f(x)=3,那么必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有f(x)大于0,为什么
设F(X)在点X0的某邻域内二阶可导,且F(X0)的导数等于0,则F(X0)的二阶导数大于0是F(X0)为F(X)极小值
设函数y=f(x)在x=x0的某邻域内有三阶连续导数,若f"(x0)=0,而f"'(x0)不等于0,问f'(x0)与0的
f(X)在x=x0点的邻域内可导,且f'(x0)=0,lim(x~x0)f'(x)=1,则f(x)在x=x0能否取到极值
设f(x)在(a,b)内连续,x0∈ (a,b)且f(x0)=A>0,证明存在一个邻域U(x0,&)∈(a,b)内使f(
函数f(x)在x0的某邻域内有意义,且如下图,则f(x)在x0处?求详解
设f(x)在x=x0的邻域内有二阶连续导数,求
函数f(x)在x0点的某一邻域内有定义能不能说明在该邻域内f(x)是连续的?