已知直线y=x-m与抛物线y²=2x相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
直线l与抛物线y^2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于M,若y1*y2=-1
直线与抛物线x^2=4y交与A(x1,y1),B(x2,y2),两点,且OA⊥OB(O为坐标原点)
设斜率为1的直线L经过抛物线y^2=4x的焦点,与抛物线相交于A(x1,y1);B(x2,y2)两点,则向量OA×向量O
已知抛物线Y∧2=4X,过点P(4,0)的直线与抛物线相交于A(X1,Y1)、B(X2,Y2)两点,则Y1∧2+Y2∧2
直线y=x-2与抛物线y2=2x相交于A、B两点,求证:OA⊥OB(O为坐标原点)
已知圆X2+Y2+X-6Y+M=0和直线X+2Y-3=O相交于A,B两点,且OA垂直于OB(O为坐标原点)求M的值
如下图直线l与抛物线Y^2=x交于A(x1,y1)B(x2,y2)两点,与X轴交于点M,且y1y2=-1,求证点M的坐标
已知坐标原点为0.抛物线X2=4y.直线y=kx+2与抛物线交于A(x1.y1)B(X2.y2)两点求(1)当K=2时求
圆锥曲线——抛物线直线l与抛物线y²=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y
已知过点P(4,0)的直线与抛物线Y^2=4X相交于A(X1,Y1),B(X2,Y2)两点,求Y1^2+Y2^2的最小值
已知抛物线y^2=-x与直线y=k(x+1)相交于A、B两点,O为坐标原点,求证OA垂直OB
已知抛物线y2=-x与直线y=k(x+1)相交于A,B两点,点o是坐标原点.