如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/13 00:31:01
如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.
(1)求证:MN=AM+BN.
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.
(1)求证:MN=AM+BN.
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.
证明:(1)∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中,
∠AMC=∠CNB,
∠MAC=∠NCB,
AC=CB,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=NC+CM,
∴MN=AM+BN;
(2)结论:MN=BN-AM.
∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中,
∠AMC=∠CNB,
∠MAC=∠NCB,
AC=CB,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=CM-CN,
∴MN=BN-AM.
再问: 理由
再问: 几何的过程啊
再问:
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中,
∠AMC=∠CNB,
∠MAC=∠NCB,
AC=CB,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=NC+CM,
∴MN=AM+BN;
(2)结论:MN=BN-AM.
∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中,
∠AMC=∠CNB,
∠MAC=∠NCB,
AC=CB,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=CM-CN,
∴MN=BN-AM.
再问: 理由
再问: 几何的过程啊
再问:
如图① 在RT△ABC中 ∠ACB=90 AC=BC 过点C在△ABC外作直线MN AM⊥MN于点M BN⊥MN于点N
如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:M
如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.
如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.(1)求证:
在三角形ABC中,∠ACB=90度,AC=BC,过点C在△ABC外做直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN
在△ABC中,∠ACB=90°,AC=BC,过顶点C在△ABC的外部作直线MN,过点A作AM⊥MN于点M,过点B作BN⊥
关于全等三角形在△ABC中,∠C=90°,AC=BC,过C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.(1)
如图在三角形ABC中,角C=90度,AC=BC过点C在三角形ABC外作直线MN,AM垂直MN于M,BN垂直MN于N.
如图,已知在△ABC中,∠ACB=90°,AC=BC,直线MN过C点,AD⊥MN于D点,BE⊥MN于E点.当直线MN绕
如图,△ABC中,∠ACB=90°,AC=BC,直线MN过C点,AN⊥MN于N,BM⊥MN于M,那么MN与AN有什么关系
如图,△ABC,∠ACB=90°,AC=BC,直线MN过C点,AN⊥MN于N,BM⊥MN于M,那么MN于AN+BM有什么
如图,已知在△ABC中,∠ACB=90°,AC=BC,直线MN过C点,AD⊥MN于D点,BE⊥MN于E点.