设A是n(n>1)维欧式空间的可数子集,证明A的补集是连通的.这个怎么证?
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
设a是n维欧式空间v的线性变换,证明,a是正交变换的充分必要条件是a在v任意一组标准正交基下的矩阵是正交矩阵
设A是n维欧式空间V的一个线性变换,证明:如果A既是正交变换又是对称变换,那么A^2=E是单位变换
设S是n维向量空间V的子集,证明一下两点:
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.
证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个
如何证明集合A的子集个数是2n
正交变换证明设V是n维欧式空间 a b属于V 且\a\=\b\ 证明 V有正交变换T使 T(a)=b
设A是复数域上的n阶矩阵,W是n维向量空间的子空间,维数至少为1,且是A的不变子空间.证明在W中有A的