已知定义域为[0,1]的函数f(x)同时满足:①对于任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③当x1,x
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 01:17:42
已知定义域为[0,1]的函数f(x)同时满足:①对于任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③当x1,x2≥0,x1+x2≤1时有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求函数f(x)的最大值;
(3)证明:当x∈(
(1)求f(0)的值;
(2)求函数f(x)的最大值;
(3)证明:当x∈(
1 |
2 |
(1)令x1=1,x2=0,则f(1+0)≥f(1)+f(0),∴f(0)≤0,
又∵于任意的x∈[0,1],总有f(x)≥0,∴f(0)≥0,
∴f(0)=0
(2)任取0≤x1<x2≤1,可知x2-x1∈(0,1],则f(x2)-f(x1)≥f(x2-x1)≥0
故f(x2)≥f(x1),∴定义域为[0,1]的函数f(x)为增函数,
于是当0≤x≤1时,有f(x)≤f(1)=1,
故当x=1时,f(x)有最大值1.
(3)证明:当x∈(
1
2,1]时,由(2)知f(x)≤1,而2x>2×
1
2=1
∴f(x)<2x
当x∈[0,
1
2]时,2x≤1,f(2x)≥f(x)+f(x)=2f(x),
∴f(x)≤
1
2f(2x)
又∵于任意的x∈[0,1],总有f(x)≥0,∴f(0)≥0,
∴f(0)=0
(2)任取0≤x1<x2≤1,可知x2-x1∈(0,1],则f(x2)-f(x1)≥f(x2-x1)≥0
故f(x2)≥f(x1),∴定义域为[0,1]的函数f(x)为增函数,
于是当0≤x≤1时,有f(x)≤f(1)=1,
故当x=1时,f(x)有最大值1.
(3)证明:当x∈(
1
2,1]时,由(2)知f(x)≤1,而2x>2×
1
2=1
∴f(x)<2x
当x∈[0,
1
2]时,2x≤1,f(2x)≥f(x)+f(x)=2f(x),
∴f(x)≤
1
2f(2x)
快,详解··21.已知定义域为[0,1]的函数f(x)同时满足①对于任意的x∈[0,1],总有f(x) ≥0,②f⑴=1
已知定义域[0,1]的函数f(x)同时满足三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③x1≥
已知定义域为[0,1]的函数f(x)同时满足:(1)对于任意x属于[0,1],总有f(x)大于等于0;(2)f(1)=1
今晚,快 详解···21.已知定义域为[0,1]的函数f(x)同时满足①对于任意的x∈[0,1],总有f(x) ≥0,②
已知定义域为R+,值域为R的函数f(x),对于任意x,y属于R+总有f(xy)=f(x)+f(y),当x>1,恒有f(x
已知函数f(x)的定义域(0,+∞),f(4)=1对于任意x1x2属于(0,+∞)有f(x1*x2)=f(x1)+f(x
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立
函数f(x)的定义域为D={x|x∈R且x≠0﹜且满足对于任意的X1,X2∈D,有f(x1.x2)=f(x1)+f(x2
已知定义域为R的函数fx满足①对于任意的x∈R,f(-x)+f(x)=0 ②当x>0是f(x)=x
希望老师讲解已知定义域为〔0,1〕的函数f(x)同时满足以下三个条件:1、对任意的x∈〔0,1〕,总有f(x)≥0 2、
定义域为(0,+∞)的函数f(x)满足:对于任意x,y∈R+,都有f(xy)=f(x)+f(y)成立.若对于x>1时,恒
函数f(x)的定义域为D=﹛x/x≠0﹜且满足对于任意x1,x2∈0,有f(x1乘x2)=f(x1)+f(x2)