高中立体几何三题,1.在正方体AC1中,E是棱CC1上的点,且a=C1E/EC,(1)若平面BED1⊥平面BDD1B1,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 12:55:42
高中立体几何三题,
1.在正方体AC1中,E是棱CC1上的点,且a=C1E/EC,(1)若平面BED1⊥平面BDD1B1,则a=_____;(2)若平面BED1⊥平面AB1C,则a=_____.
2.(1)菱形ABCD中,∠A=60°,AB=4,将其沿BD折成直二面角后,AC=_____;二面角A-CD-B的正切等于_____.
(2)在矩形ABCD中,AB=3,AD=4,将其沿BD折成直二面角,AC=_____.
3.已知ABCD是矩形,PA⊥平面ABCD,M是PC中点,PA=AD
(1)求证:平面MAB⊥平面PCD
(2)求二面角M-AB-C的大小
1.在正方体AC1中,E是棱CC1上的点,且a=C1E/EC,(1)若平面BED1⊥平面BDD1B1,则a=_____;(2)若平面BED1⊥平面AB1C,则a=_____.
2.(1)菱形ABCD中,∠A=60°,AB=4,将其沿BD折成直二面角后,AC=_____;二面角A-CD-B的正切等于_____.
(2)在矩形ABCD中,AB=3,AD=4,将其沿BD折成直二面角,AC=_____.
3.已知ABCD是矩形,PA⊥平面ABCD,M是PC中点,PA=AD
(1)求证:平面MAB⊥平面PCD
(2)求二面角M-AB-C的大小
1.(1)a=1,即E为CC1中点时,平面BED1⊥平面BDD1B1.
连接BD1和B1D,交点为O
在正方体BD1中,O点平分BD1和B1D
E为CC1中点时,ED1=BE
在等腰三角形ED1B中,EO为底边BD1上的中线
∴EO⊥BD1
同理有:EO⊥B1D
∴EO⊥BB1D1D平面,则平面BED1⊥平面BDD1B1
(2)在棱锥B-ACB1中,底面ACB1为等边三角形,三个侧面为等腰直角三角形
BD1与ACB1交点为G,G为B点在ACB1上的正投影
BG⊥ACB1,即BD1⊥ACB1
∴无论E点在CC1上什么位置,都有平面BED1⊥平面AB1C
2.(1)作AE⊥BD,垂足为E
AE=EC=√3AB/2=2√3
AC=√2AE=2√6
作AF⊥DC,垂足为F.连接EF
∵ABD⊥CBD
∴EF为AF在CBD平面的投影,EF⊥DC
∠AFE即为所求.
tan ∠AFE=AE/EF
菱形ABCD中,∠A=60°∴ΔBDC与ΔADB为两相等的等边三角形
AE=2√3,EF=h/2=AE/2=√3
∴tan ∠AFE=2
3.(1)PA⊥平面ABCD ∴平面PAD⊥平面ABCD
CD⊥AD ∴CD⊥平面PAD
PC在平面PAD上的正投影为PD,M点正投影为PD中点M'
连接AM',PA=PD ∴AM'⊥PD
AM与BM在PAD上的正投影均为AM'
∴AM⊥PD,BM⊥PD
则PD⊥平面MAB 平面MAB⊥平面PCD
(2)M在ABCD上的正投影为对角线交点O
AM=BM
作ME⊥AB,则E为AB中点,连接OE,OE⊥AB
∠MEO即为所求
OE=AD/2,MO=PA/2
tan ∠MEO=MO/OE=PA/AD=1
∴∠MEO=45º
连接BD1和B1D,交点为O
在正方体BD1中,O点平分BD1和B1D
E为CC1中点时,ED1=BE
在等腰三角形ED1B中,EO为底边BD1上的中线
∴EO⊥BD1
同理有:EO⊥B1D
∴EO⊥BB1D1D平面,则平面BED1⊥平面BDD1B1
(2)在棱锥B-ACB1中,底面ACB1为等边三角形,三个侧面为等腰直角三角形
BD1与ACB1交点为G,G为B点在ACB1上的正投影
BG⊥ACB1,即BD1⊥ACB1
∴无论E点在CC1上什么位置,都有平面BED1⊥平面AB1C
2.(1)作AE⊥BD,垂足为E
AE=EC=√3AB/2=2√3
AC=√2AE=2√6
作AF⊥DC,垂足为F.连接EF
∵ABD⊥CBD
∴EF为AF在CBD平面的投影,EF⊥DC
∠AFE即为所求.
tan ∠AFE=AE/EF
菱形ABCD中,∠A=60°∴ΔBDC与ΔADB为两相等的等边三角形
AE=2√3,EF=h/2=AE/2=√3
∴tan ∠AFE=2
3.(1)PA⊥平面ABCD ∴平面PAD⊥平面ABCD
CD⊥AD ∴CD⊥平面PAD
PC在平面PAD上的正投影为PD,M点正投影为PD中点M'
连接AM',PA=PD ∴AM'⊥PD
AM与BM在PAD上的正投影均为AM'
∴AM⊥PD,BM⊥PD
则PD⊥平面MAB 平面MAB⊥平面PCD
(2)M在ABCD上的正投影为对角线交点O
AM=BM
作ME⊥AB,则E为AB中点,连接OE,OE⊥AB
∠MEO即为所求
OE=AD/2,MO=PA/2
tan ∠MEO=MO/OE=PA/AD=1
∴∠MEO=45º
三垂线定理正方体ABCD-A1B1C1D1中E,F分别为棱AA1,CC1的中点,求证:(1)EF⊥平面BDD1B1 (2
如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=12AB=1.
如图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
正方体ABCD~A1B1C1D1中E为棱CC1的中点求AC1平行平面BED
在长方体ABCD-A1B1C1D1中,AB=BC,E是棱CC1上的点,且CE=四分之一CC1.求证A1C垂直于平面BDE
在正方体ABCD-A1B1C1D1中,E为CC1的中点(1)求证AC1⊥平面A1BD(2)求二平面角A1-BD-E的大小
高中立体几何求解如图所示,在棱长为1的正方体OABC—O1A1B1C1中,E、F分别是棱AB,BC上的动点,且AE=BF
在棱长为A的正方体ABCD-A1B1C1D1正方体中,EF分别是棱AB,BC上的动点,且AE=BF,求证A1F⊥C1E
正四棱柱ABCD~A1B1C1D1中 AA1=2 AB=4 点E在CC1上 且C1E=3EC 点F在BB1上 且BF=B
在正方体ABCD—A1B1C1D1中,E、G分别是BC、C1D1的中点,求证:EG∥平面BDD1B1
高中立体几何题1在棱长为a的正方体中,过有公共顶点的三条棱的中点作平面切去正方体的八个角,所得到的几何体的全面积?2已知
在棱长为2的正方体AC1中.点E.F分别是棱AB.BC的中点,则点C1到平面B1EF的距离为?