过抛物线y^2=2Px,(P>0)的焦点作一直线交抛物线于A,B两点以AB为直径的圆与抛物线相切于点C(-2,-2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:30:43
过抛物线y^2=2Px,(P>0)的焦点作一直线交抛物线于A,B两点以AB为直径的圆与抛物线相切于点C(-2,-2)
(1)求抛物线的方程
(2)求直线AB的方程
(3)求圆的方程
(1)求抛物线的方程
(2)求直线AB的方程
(3)求圆的方程
题目有误
不可能是与抛物线相切于第三象限
题目应该是与抛物线准线相切于点C(-2,-2)
这样一来
1) y^2= 2px 的准线方程是 x = -p/2
由条件知 点(-2,-2)在准线上,故 -p/2 = -2 ,所以 p = 4
所以 抛物线的方程是 y^2= 8x
2) 从而抛物线的焦点为 F(2,0)
设直线方程为 y = k(x-2) ,即 x = y/k + 2
与抛物线方程 y^2 = 8x 联立,消去 x ,得 y^2- (8/k)y - 16 = 0
由韦达定理可得 AB 的中点 M 的纵坐标为 4/k
半径 MC 垂直于准线于点 C(-2,-2)
所以 M、C 的纵坐标应该相等,即 4/k = -2 ,所以 k = -2
所以 直线 AB 的方程是 y = -2(x-2) 即 2x + y - 4 = 0
3) 从而圆心纵坐标为 -2 ,代入 2x + y - 4 = 0 得 横坐标为 3
即 M(3,-2)
所以 半径 |MC| = 3-(-2) = 5
所以 圆的方程为 (x-3)^2+ (y+2)^2 = 25
不可能是与抛物线相切于第三象限
题目应该是与抛物线准线相切于点C(-2,-2)
这样一来
1) y^2= 2px 的准线方程是 x = -p/2
由条件知 点(-2,-2)在准线上,故 -p/2 = -2 ,所以 p = 4
所以 抛物线的方程是 y^2= 8x
2) 从而抛物线的焦点为 F(2,0)
设直线方程为 y = k(x-2) ,即 x = y/k + 2
与抛物线方程 y^2 = 8x 联立,消去 x ,得 y^2- (8/k)y - 16 = 0
由韦达定理可得 AB 的中点 M 的纵坐标为 4/k
半径 MC 垂直于准线于点 C(-2,-2)
所以 M、C 的纵坐标应该相等,即 4/k = -2 ,所以 k = -2
所以 直线 AB 的方程是 y = -2(x-2) 即 2x + y - 4 = 0
3) 从而圆心纵坐标为 -2 ,代入 2x + y - 4 = 0 得 横坐标为 3
即 M(3,-2)
所以 半径 |MC| = 3-(-2) = 5
所以 圆的方程为 (x-3)^2+ (y+2)^2 = 25
过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是( )
已知过抛物线y^2=2px(p>0)的焦点F作一条直线与抛物线交于A、B两点,以线段AB为直径的圆与直线x=-1相切,求
过抛物线y^2=2px(p大于0)的焦点,做一条直线交抛物线于A,B两点,以AB为直径的圆与抛物线的准线切于点
设p>0是一常数,过点Q(2P,0)的直线与抛物线y²=2px交于相异两点A、B.求证:以线段AB为直径的圆过
求直线方程已知抛物线C:y的平方=2PX过点A(1,-2)直线L过抛物线C的焦点F与抛物线C交于A,B两点,弦AB的长为
已知直线l过点M(4,0)且与抛物线y的平方=2px(p>0)交于A、B两点,以炫AB为直径的圆恒过坐标原点O.求抛物线
已知抛物线y^2=2px的焦点为F,过F得直线L与抛物线交与A,B两点 求证以AB为直径的圆必与抛物线的准线相切
设P大于0是一个常数,过点Q(2P,0)的直线与抛物线y∧2=2px交于相异两点A,B,以线段AB为直径做圆H
7.过抛物线y*2=2px(p>0)的焦点F作倾斜角为45度的直线交抛物线与A,B两点,若线段AB的长为8,求抛物线的标
已知抛物线y^2=2px(p>0)的焦点为F,过F作直线l交抛物线于两点A,B求证:|AB|≥2p
过抛物线y2 =2px (p>0)焦点,且斜率为1的直线交抛物线于A,B两点,若AB=8,求抛物线方程
已知抛物线y^2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证: