设抛物线Y*Y=2PX(P>0)的焦点为F ,经过焦点F 的直线交抛物线于A.B两点,点C在抛物线的准线上,且BC平行于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 16:17:24
设抛物线Y*Y=2PX(P>0)的焦点为F ,经过焦点F 的直线交抛物线于A.B两点,点C在抛物线的准线上,且BC平行于X轴,证明:直线AC经过原点.
(仅供参考)
过A作AD//x,交准线于D,因为AD=Af,CB=BF,用平面几何证出角CDF=90.
勾股定理得出:CD^2=DF^2+CF^2,得到yA*yB=-p^2.
要证:OA斜率=OC斜率,即证:yA/xA=yC/xC=yB/(-p/2),只需证
(-p/2)yA=xAyB.两边乘以yA:
(-p/2)yAyA=xAyByA,因上述的yA*yB=-p^2.
只需证
(-p/2)yAyA==-p^2xA
yA^2=2pxA
过A作AD//x,交准线于D,因为AD=Af,CB=BF,用平面几何证出角CDF=90.
勾股定理得出:CD^2=DF^2+CF^2,得到yA*yB=-p^2.
要证:OA斜率=OC斜率,即证:yA/xA=yC/xC=yB/(-p/2),只需证
(-p/2)yA=xAyB.两边乘以yA:
(-p/2)yAyA=xAyByA,因上述的yA*yB=-p^2.
只需证
(-p/2)yAyA==-p^2xA
yA^2=2pxA
设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直
设抛物线 y2=2px (p>0) 的焦点为F 经过点F的直线交抛物线于A,B两点 点C在抛物线的准线上 且BC‖x轴
已知抛物线y^2=2px(p>0),过焦点F且斜率为正的直线交其准线于点A,交抛物线于B、C两点,B在A、C之间.
设抛物线C:y^2=2px(p>0),直线l经过抛物线的焦点F与抛物线交于A,B两点,O是坐标原点.
1、抛物线y^2=2px(p>0)的焦点F,过F点直线交抛物线于AB两点,点C在准线上,且BC||x轴,证明AC过原点O
设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点的坐标分别为(x1,y1)、
设抛物线y^2=2px的焦点为f,经过点f的直线与抛物线交于a、b两点,又m是其准线上一点,试证:直线ma、mf、mb
设抛物线C:y^2=2px(p>0)的焦点为F,经过F的动直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y
设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
过抛物线y^2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若向量BC=-2向量BF,且|AF|
设F是抛物线y^2=2px(p大于0)的焦点,直线l过F与抛物线交于A,B两点,准线l'与x轴交于点K.求证角AKF=角